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Abstract

Within (semi-)automated visual industrial inspection,

learning-based approaches for assessing visual defects, in-

cluding deep neural networks, enable the processing of oth-

erwise small defect patterns in pixel size on high-resolution

imagery. The emergence of these often rarely occurring de-

fect patterns explains the general need for labeled data cor-

pora. To alleviate this issue and advance the current state of

the art in unsupervised visual inspection, this work proposes

a DifferNet-based solution enhanced with attention mod-

ules: AttentDifferNet. It improves image-level detection and

classification capabilities on three visual anomaly detection

datasets for industrial inspection: InsPLAD-fault, MVTec

AD, and Semiconductor Wafer. In comparison to the state of

the art, AttentDifferNet achieves improved results, which are,

in turn, highlighted throughout our quali-quantitative study.

Our quantitative evaluation shows an average improvement –

compared to DifferNet – of 1 .77 ± 0 .25 percentage points

in overall AUROC considering all three datasets, reaching

SOTA results in InsPLAD-fault, an industrial inspection in-

the-wild dataset. As our variants to AttentDifferNet show

great prospects in the context of currently investigated ap-

proaches, a baseline is formulated, emphasizing the impor-

tance of attention for industrial anomaly detection both in

the wild and in controlled environments.

1. Introduction

The automation of visual defect inspection can reduce

inspection costs and security risks in multiple industries.

However, industries such as manufacturing [4,26,43], health-

care [14, 28], security [1], video surveillance [8, 25], and

power delivery [11, 37] often suffer with the scarcity of de-

fective samples to train deep learning methods due to their

rare occurrence and their high financial and social impact.

Those factors severely hamper the usage of fully supervised

machine learning approaches while increasing the popularity

of un-/semi-supervised anomaly detection methods [20].

Anomaly detection methods often rely on normal/flawless

samples during model training. They extract unique infor-

mation from those samples, e.g., data distributions, whereby

during test time, they can discriminate between flawless and

anomalous samples. The recent MVTec AD [2] dataset for

anomaly detection fostered new research on this topic, such

as anomaly detection methods based on normalizing flows,

which are a class of machine learning models that are used

for density estimation. This approach has become popular

since it can model complex probability distributions using

simpler ones, e.g., normal distributions.

Although most recent anomaly detection methods use

MVTec AD as their primary dataset [8, 13, 25–27, 35, 43],

it only presents limited challenges focused on the manu-

facturing industry. The components are captured under a

controlled environment with constant background, lighting,

object scale, perspective, and image resolution. More re-

cently, some datasets address this issue, such as the AeBAD

dataset [46], which provides the diversity of domains within

the same data category, and the MVTec LOCO-AD [3],

which evaluates logical constraints in anomaly detection.

Anomaly detection for industrial inspection in the wild,

e.g., for power line inspection, is an open problem due to the

lack of public datasets and the associated computer vision

challenges, which include the variation of perspective, scale,

orientation, lighting, background, and resolution, as well

as cluttering and projection deformations due to multiple

camera angles.

Attention modules can boost the representational power

of artificial neural networks by improving spatial and/or

channel encodings. In other words, they highlight relevant

information from foreground objects while concealing the

background and other less relevant image regions and objects.

This WACV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Attention modules can be easily integrated into most CNN-

based methods, improving feature extraction quality without

compromising computational performance.

This work studies the usage of attention modules on

DifferNet, a modern anomaly detection method based on

normalizing flows. The main findings of this work are:

• The new attention-based DifferNet, AttentDifferNet, is

superior to the standard DifferNet on all objects from

three anomaly detection datasets, each dataset from a

distinct industrial inspection domain;

• AttentDifferNet achieves state-of-the-art performance

on InsPLAD-fault, a dataset for image-level industrial

anomaly detection in the wild;

• AttentDifferNet is qualitatively superior to DifferNet;

• A straightforward coupling of popular attention mod-

ules to modern feature-embedding-based unsupervised

anomaly detection.

2. Related Work

Conventionally, classical (semi-)automated visual in-

spection approaches encompassed the following [17, 29]:

projection-based (principal component analysis (PCA), lin-

ear discriminant (LDA), or independent component analysis

(ICA) based approaches), filter-based (spectral estimation

and transformation based approaches such as discrete co-

sine (DCT), Fourier (FT), and wavelet transform), as well

as hybrid approaches [9, 32, 36, 44]. With the rise in com-

putational power and the availability of large labeled data

corpora, learning-based approaches, including support vector

machines (SVM) and artificial neural networks (ANN) such

as multilayer perceptrons (MLP), have long since taken over

the competition over the last decades [9, 16, 21, 41]. Today,

deep neural networks (DNN) such as convolutional neural

networks (CNN) [6,22,23,29] and vision transformers (ViT)

are considered the vanguards of human-like performance in

terms of detection and classification capabilities.

Current works apply attention mechanisms to classic

image-level anomaly detection methods, encompassing ap-

proaches based on CNNs [31,33,34] and generative adversar-

ial networks (GAN) [11]. However, due to the proposition

of public datasets for anomaly detection such as MVTec

AD and Magnetic Tiles Defects (MTD) [18], new classes

of anomaly detection methods have been proposed. Those

modern methods are the current state of the art considering

the benchmarks built from MVTec AD and MTD. Currently,

a popular approach is to propose methods that benefit from

extracted feature embeddings at image and pixel levels. Two

recent techniques are distribution mapping through normaliz-

ing flows [13,26,27,43] and feature memory banks [7,8,25].

Normalizing flows are commonly used for density estima-

tion. It uses a series of invertible mathematical transforma-

tions to turn samples from the base distribution into samples

from the target distribution. Thus, they are used to learn the

underlying probability density function of the normal data.

Finally, any data point with a low likelihood is considered an

anomaly under the learned model. A feature memory bank

is another recent approach in which the extracted feature

embeddings are stored in a memory bank. Each method uses

a different approach to how the features are grouped and

how they relate to each other. In the testing phase, when an

image is presented, its features are extracted and compared

to the ones in the memory bank. Based on the similarity

of the features, the tested image is classified as normal or

anomalous. Both approaches similarly use a backbone CNN

to extract features. In that sense, using attention mechanisms

in that phase may assist the network.

Recently, multiple attention modules have been proposed

to improve the expression ability of CNNs in visual inspec-

tion [5, 24]. To improve the spatial and/or channel encoding,

multiple image-level anomaly detection methods apply atten-

tion mechanisms [11, 31, 33, 34]. On a similar path, in [42],

the authors proposed to apply attention blocks during the nor-

malizing flow step, which can lead to complex modifications

due to their mathematically invertible nature.

Two of the most popular are the Squeeze-and-Excitation

Networks (SENet) [15] and the Convolutional Block Atten-

tion Module (CBAM) [40]. SENet can adaptively recalibrate

channel-wise response with global contextual information

by signals aggregated from feature maps. CBAM introduces

channel and spatial attention to generate weights of different

channels and locations, highlighting the location and class

information. Other popular modular attention mechanisms

that further develop the idea of channel and spatial atten-

tion are ECANet [39] and SA-Net [45]. They may also be

integrated into many architectures.

We propose a new method using modular attention mech-

anisms on an anomaly detection method based on normal-

izing flows through simple modifications. The hypothesis

in this work is that the usage of attention modules helps a

state-of-the-art anomaly detection method to focus on the

analyzed foreground object while overcoming background

interference and other distractions for industrial anomaly

detection in the wild. For this purpose, it is also crucial that

the proposed method’s performance does not deteriorate in

controlled scenarios.

3. Methods

In this section, we explain how DifferNet and the ap-

plied attention modules work and how we combine them to

develop our proposed method, AttentDifferNet.
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3.1. DifferNet

DifferNet [26] is a recent method for unsupervised image-

based anomaly detection. Preliminary experiments indicated

that DifferNet’s performance for anomaly detection in the

wild was superior to other similar methods, including even

to more recent ones. These results can be seen in Table 2

in Section 4. Therefore, DifferNet was our first choice to

be adapted with attention modules to enhance the focus on

objects of interest in the wild.

Regarding the method itself, DifferNet combines convolu-

tional neural networks with normalizing flows. The CNN in

DifferNet is an AlexNet [19], which works as a backbone for

feature embedding extraction. It takes the training images

to generate descriptive features of flawless images. The fea-

tures are then mapped to a latent space using a normalizing

flow model. It is possible to calculate the likelihood of image

samples from this latent space, whereas anomalous images

should present a lower likelihood than the flawless samples

present in the training process. Because of this, the training

goal is to find parameters that maximize the likelihood of

extracted features in the latent space.

3.2. Attention Modules

Squeeze-and-Excitation Networks [15] and Convolu-

tional Block Attention Modules [40] are two well-known

architectural unit attention modules with similar goals: in-

crease the representational power of CNNs by selectively

emphasizing important features while suppressing irrelevant

ones.

3.2.1 Squeeze-and-Excitation Networks (SENet)

The SENet [15] method consists of three submodules: the

Squeeze Module, the Excitation Module, and the Scale Mod-

ule, also shown in Figure 1a. The Squeeze Module focuses

on adapting feature maps for optimal channel attention. It uti-

lizes a feature descriptor such as pooling to reduce the spatial

dimensions of feature maps to a single value, resulting in the

attention being adaptive to each channel. By decomposing

each feature map, the computational complexity is reduced.

The global average pool descriptor (GAP) is chosen as the

feature descriptor, which calculates the average of all pixels

within the feature map.

The Excitation Module employs an MLP bottleneck struc-

ture. It reduces the input space to a smaller dimension using

a reduction factor and then expands it back to the original

dimensionality. The MLP operates on the compressed space

and maintains the (C × 1× 1) shape throughout the module.

Finally, in the Scale Module, the “excited” tensor undergoes

a sigmoid activation to scale the values to a range of [0, 1].
Subsequently, the output is multiplied element-wise with the

input tensor using broadcasted multiplication. Each channel /

Feature Map Refined Feature Map

Squeeze

Excitation

(a) SENet module architecture representation.

Channel Attention Module

Spatial Attention Module

Feature Map Redefine Feature Map

(b) CBAM module architecture representation.

Figure 1. Architecture of applied attention modules.

feature map in the input tensor is scaled by its corresponding

learned weight from the MLP in the Excitation Module.

3.2.2 Convolutional Block Attention Modules (CBAM)

CBAM [40] utilizes a combination of two submodules, the

channel attention module and the spatial attention module

displayed in Figure 1b. The first one creates an attention

map using the inter-channel connections of the features. The

method extracts spatial context descriptors by combining av-

erage pooling and max-pooling operations on a given feature

map. Then, a shared network processes these descriptors,

resulting in a channel attention map.

To generate a spatial attention map highlighting infor-

mative regions, CBAM employs a spatial attention module

that captures inter-spatial relationships within the features.

Unlike channel attention, which focuses on the importance

of different feature channels, spatial attention determines the

location of informative parts. First, to compute the spatial

attention, average pooling and max-pooling operations are

applied along the channel axis. The resulting feature maps

are concatenated. This concatenated feature descriptor is fed

through a convolutional layer, resulting in a spatial attention

map indicating regions to emphasize or suppress.

3.3. AttentDifferNet

DifferNet was conceived to detect defects in objects from

images captured in a controlled context such as objects from

an industrial production line. To adapt it to overcome the

challenges of object inspection in the wild, modular attention-

based mechanisms were added to its backbone architecture.

This allows the backbone network to focus on foreground el-

ements to generate more relevant feature embeddings of the

image with the inspected object. In this work, two architec-

tures are experimented with, one using SENet and one using

CBAM, as multiple works report significant performance

increases by adding them to the pipeline while they can be
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448×448×3

2×[111×111×64]

2×[55×55×192]

Convolutional + ReLU

Max Pooling 3×3

27×27×384 3×[27×27×256]

Attention Block

AB1
AB2

Attention Blocks

NF

Normalizing Flow

z

x
AB3

Figure 2. Proposed AttentDifferNet architecture.

easily coupled into CNNs. Furthermore, they are arguably

two of the most popular attention modules.

Figure 2 shows our proposed architecture. The attention

block’s role changes according to the depth in which it is

placed within the neural network. In the first few layers, it

learns to highlight lower-level, class-agnostic features. In

the deeper layers, it becomes more specialized, responding

to different inputs in a class-specific manner. Therefore, our

proposed architecture leverages the advantages of attention

blocks throughout the entire network.

Similarly to DifferNet, AttentDifferNet works by extract-

ing image feature embeddings y ∈ Y from an anomaly-free

input image x ∈ X and estimating these feature embeddings’

density. The fFE : X → Y map is done by a pretrained fea-

ture extractor, which is a modified version of AlexNet with

three attention blocks: AB1, AB2, and AB3, positioned as

shown in Figure 2. To estimate pY (y), the probability den-

sity function, it is first necessary to map from Y into a latent

space Z, the latter having a known and well-defined pZ(z).
This mapping is achieved by applying a normalizing flow

fNF : Y → Z. Finally, the likelihood of a given input image

is calculated directly from pZ(z). A high likelihood indi-

cates that a set of image features is from the distribution,

while a low one indicates otherwise. Thus, the latter should

represent an anomalous sample.

3.4. Attention Modules in Other Methods

To show how attention modules impact other AD meth-

ods, we added them to SOTA AD methods according to

MVTec AD: ReverseDistillation++ [35] and FastFlow [43].

To obtain a fair comparison, we select ResNet-18 as their

backbone network, which is somewhat deeper than AlexNet.

To combine ResNet-18 with attention modules, we follow

the SENet authors’ orientation by placing the SENet block

in the non-identity branch of a residual module, resulting in

the Squeeze and Excitation operations both to act before the

summation with the identity branch, producing SE-RN18

and CBAM-RN18.

Asset category

Anomaly detection

Train Test

Flawless Flawless Anomalous

Glass Insulator 2298 581 90

Lightning Rod Suspension 462 117 50

Polymer Insulator Upper Shackle 935 235 102

Vari-grip 477 114 63/48

Yoke Suspension 4834 1207 49

Table 1. InsPLAD-fault anomaly detection dataset description.

Glass Insulator anomalies are missing caps, while the remaining

are corrosion-related. Vari-grip has two types: bird nest / corrosion.

4. Experiments

4.1. Datasets

Here, we present the three industrial inspection datasets

used in our experiments: one in the wild, which is remotely

sensed using a drone, and two in controlled scenarios.

InsPLAD1 [38] is a power line asset inspection in-the-

wild dataset that offers multiple computer vision challenges,

one being anomaly detection in power line components

called InsPLAD-fault. Its data are real-world unmanned

aerial vehicle (UAV) images of operating power line trans-

mission towers. It contains five power line object categories

with one or two types of anomalies for each class, resulting

in 11 662 images, of which 402 are samples of defective

objects annotated on image level. Since they are real-world

defects, none of the faults have been fabricated or generated

manually. Table 1 shows the InsPLAD-fault properties for

the anomaly detection task, whereas Figure 3 depicts a flaw-

less and a defective sample for each of the five power line

object classes.

MVTec AD [4] is the most popular public dataset for

unsupervised anomaly detection. It contains annotated data

of objects and textures in controlled industrial scenarios at

both image and pixel levels with and without anomalies. The

anomalies are manually generated in an attempt to mimic

real-world defects. It has ten objects and five textures cat-

egories, also shown in Table 3. There are two types of

annotations: image-level, i.e., a normal or anomalous object

in the image, and pixel-level, i.e., a normal or anomalous

pixel in the image in the form of an image mask. In this

work, we only use image-level annotations.

The Semiconductor Wafer Dataset [29] is a visual in-

spection wafer dataset for image classification (annotated in

image-level), encompassing various wafers, chips, streets,

and street segments. Wafer images were obtained from differ-

ent real-world dicing manufacturers by scanning the wafers’

chips after their cutting process. Figure 4 shows a dataset

overview in which the first two rows correspond to flawless

1https : / / github . com / andreluizbvs / InsPLAD (see

unsupervised anomaly detection.zip)

8249



Glass Insulator Lightning Rod Suspension Polymer Insulator Upper Shackle Vari-grip Yoke Suspension

Figure 3. InsPLAD-fault dataset overview. The first row shows flawless samples (green frames), while the second row shows defective ones

(red frames).

Type 1 Type 2 Type 3 Type 4 Type 5

Figure 4. Semiconductor Wafer dataset overview including flawless

(green frames) and faulty (red frames) chips and streets per wafer

type [29]. In order to protect the intellectual property of the wafer

imagery, the shown examples are synthesized given the original

imagery while retaining a close resemblance [10].

and faulty samples of the chip category, while the last two

to the street category. Also, each column shows a different

type of wafer to ensure variability. During the creation of

this dataset, it was also found that images containing faulty

chips or streets occurred at a much lower frequency than

those without defects. Unlike MVTec AD, it contains real

faulty data, including defects such as “spur”, “break out”,

“overetch”, and “scratch” defect patterns [9, 21].

4.2. Implementation Details

We used an NVIDIA RTX 2080 Ti GPU in a Linux en-

vironment to conduct our experiments. The convolutional

layer weights are initialized with their respective AlexNet

layers pretrained with ImageNet, while the attention block

layers are trained from scratch. All models were trained for

100 epochs twice, for which the best AUROC results from

those runs are reported. Other parameters and hyperparame-

ters, such as input image size, batch size, and learning rate,

are the same as reported in the original DifferNet work [26].

Models were only trained with image-level annotations in

all three datasets, i.e., no pixel-level masks were used.

4.3. Quantitative Results

The following sections present the quantitative analysis

results. The analysis utilizes the area under the receiver op-

erating characteristic curve (AUROC) as the performance

metric. Notably, in every table, the underlined values rep-

resent the maximum AUROC achieved by any DifferNet

implementations within each category, while bold values

indicate the highest AUROC across all methods.

4.3.1 InsPLAD

Table 2 details the results in the InsPLAD dataset. Attent-

DifferNet (SENet) consistently achieves the highest AUROC

scores in every category, outperforming the baseline method,

DifferNet. The most significant improvement is in the Glass

Insulator category. It performs with an AUROC of 86.57%,

surpassing DifferNet’s score of 82.81%. Relevant enhance-

ments can also be verified across every other category.

AttentDifferNet (CBAM) exhibits competitive perfor-

mance in most categories, although slightly lower than

AttentDifferNet (SENet). This indicates that incorporating

attention blocks in the backbone network enhances or at

least matches the DifferNet performance in this case. Com-

pared to methods such as CS-Flow, PatchCore, FastFlow,

CFLOW-AD, RD++, and their variations, both iterations

of AttentDifferNet consistently demonstrate superior perfor-

mance. AttentDifferNet (SENet) achieves the highest overall

AUROC of 94.34%, followed by DifferNet at 92.46%.

Notably, the attention-enhanced FastFlow (CBAM-RN18)

surpasses the standard FastFlow. Similarly, improvements

are observed for the attention-based RD++ methods, with

minor performance increases compared to the base RD++.

These results highlight the role of attention mechanisms in

AUROC scores considering this uncontrolled scenario.
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Category DifferNet
AttentDifferNet

(SENet)

AttentDifferNet

(CBAM)

FastFlow

(RN18)

FastFlow

(SE-RN18)

FastFlow

(CBAM-RN18)

RD++

(RN18)

RD++

(SE-RN18)

RD++

(CBAM-RN18)
CS-Flow CFLOW-AD PatchCore

Glass

Insulator
82.81 86.57 81.03 70.16 73.21 73.01 86.03 86.54 86.21 85.73 82.22 78.44

Light.

Rod Susp.
99.08 99.62 99.33 82.02 77.60 80.03 97.06 97.69 97.54 96.60 95.52 85.11

Pol. Ins.

Upper Shackle
92.42 94.62 92.10 77.43 61.49 76.28 81.96 82.04 83.67 88.40 86.60 81.02

Vari-

Grip
91.20 93.52 88.99 65.54 65.74 74.64 93.88 93.52 93.85 91.53 90.37 91.92

Yoke

Suspension
96.77 97.38 96.86 71.48 73.64 75.68 91.42 91.80 92.46 90.70 83.87 58.06

Avg AUROC 92.46 94.34 91.66 73.33 73.21 75.93 90.07 90.32 90.75 90.59 87.72 78.91

Table 2. Comparison of area under ROC results in % on the InsPLAD-fault dataset. Bold font indicates the best category result, while

underlined values are the best between DifferNet variations. RN18 refers to the network backbone, ResNet-18.

4.3.2 MVTec AD

Table 3 presents the experiments’ results on the MVTec AD

dataset. Among the DifferNet variations, AttentDifferNet

(CBAM) consistently achieves the highest AUROC scores

in most categories, outperforming the standard DifferNet in

all of them. Furthermore, AttentDifferNet (SENet) also per-

forms best among DifferNet variations in several categories,

including Bottle, Cable, Capsule, Transistor, and Zipper.

Both variations are overall superior to the basic DifferNet.

Additionally, AttentDifferNet (SENet) demonstrates no-

table performance improvements compared to the standard

DifferNet, achieving the highest AUROC scores in 14 out

of 15 categories. Regarding other attention-based varia-

tions, FastFlow (CBAM-RN18) maintains its trend of minor

improvements over vanilla FastFlow (RN18) as shown in

section 4.3.1, evident from its AUROC score of 98.50% in

the Capsule category. Meanwhile, attention-based RD++

methods (SE-RN18 and CBAM-RN18) show incremental

yet noteworthy enhancements. Note that RD++ (SE-RN18)

reaches top-3 overall performance in MVTec-AD only be-

hind CFLOW-AD and PatchCore with their original, much

deeper backbones than SE-RN18.

When considering the overall performance among Dif-

ferNets, AttentDifferNet (CBAM) achieves the highest at

96.97%, surpassing DifferNet’s average AUROC of 94.69%.

Its performance in the Screw category is a highlight, reach-

ing state-of-the-art. This again emphasizes the improvement

obtained by incorporating attention modules, even though

controlled environments are not the target.

4.3.3 Semiconductor Wafer Dataset

Table 4 displays the results in the Semiconductor Wafer

dataset. Within the street classification category, Attent-

DifferNet (SENet) achieves a 90.44% AUROC, surpassing

DifferNet and AttentDifferNet (CBAM) by at least four per-

centage points. However, it is important to acknowledge that

CS-Flow achieves an AUROC score of 97.19%, being the

best in this category by seven percentage points.

Moving to the Chip Classification category, AttentDiffer-

Net (CBAM) stands out with the AUROC score of 93.39%,

outperforming both DifferNet with 91.09% and AttentDiffer-

Net (SENet) with 89.96%. Notably, PatchCore achieves a

noteworthy AUROC score of 93.90%, indicating its strong

performance within this category.

Despite not achieving the best results, AttentDifferNet

consistently improves standard DifferNet results, showing

that using attention blocks is also beneficial in this domain.

4.4. Qualitative Results

The qualitative results use the Grad-CAM tool [12, 30]

as an explainable AI tool to reveal where the network is

focusing on to make its decisions. We compare the feature

extractors of DifferNet and AttentDifferNet, considering all

categories from InsPLAD (Figure 5) and some categories

of MVTec-AD (Figure 6). In Figure 5, AttentDifferNet

(SENet) is able to focus on more significant features for all

classes, such as the object that was supposed to be analyzed

in the foreground, reducing the impact of the background as

expected. In the first object (Glass Insulator), the missing cap

is now taken into account directly as the backbone focuses on

the object. In the middle column (Polymer Insulator Upper

Shackle), the network improves its focus on the foreground

object but also focuses on the transmission tower wires,

which may disturb the model outcome since it is not part of

the main object of interest.

The other comparisons are from MVTec AD data. Note

that DifferNet’s behavior differs from the anomaly localiza-

tion maps presented in the original DifferNet paper. That

is expected since we are focusing on the feature extractor

step only. Grad-CAM’s target layer is the last convolutional

layer of the feature extractor network, where it has the best

compromise between high-level semantics and detailed spa-

tial information, as the Grad-CAM authors [30] recommend.

Considering AttentDifferNet, it was even more specific on

MVTec AD, apparently focusing on the anomaly/defect it-
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Category DifferNet
AttentDifferNet

(SENet)

AttentDifferNet

(CBAM)

FastFlow

(RN18)

FastFlow

(SE-RN18)

FastFlow

(CBAM-RN18)

RD++

(RN18)

RD++

(SE-RN18)

RD++

(CBAM-RN18)
CS-Flow CFLOW-AD PatchCore

Bottle 99.00 99.84 99.68 97.74 98.43 98.26 100.00 100.00 100.00 99.80 100.00 100.00

Cable 95.90 98.43 96.65 96.94 91.00 96.06 99.06 99.34 99.57 99.10 97.59 99.50

Capsule 86.90 93.86 92.58 98.28 98.17 98.50 96.86 96.21 95.57 97.10 97.68 98.10

Carpet 92.90 93.74 95.18 98.78 95.51 98.69 99.92 99.80 99.84 100.00 98.73 98.70

Grid 84.00 90.89 91.23 98.73 89.81 98.33 99.83 100.00 100.00 99.00 99.60 98.20

Hazelnut 99.30 99.89 100.00 96.17 98.42 96.02 100.00 100.00 100.00 99.60 99.98 100.00

Leather 97.10 98.61 99.32 99.62 99.37 99.54 100.00 100.00 100.00 100 100.00 100.00

Metal Nut 96.10 96.53 97.70 96.29 94.98 96.90 100.00 100.00 100.00 99.10 99.26 100.00

Pill 88.80 91.79 93.48 96.61 94.81 97.10 97.68 97.90 98.04 98.60 96.82 96.60

Screw 96.30 96.21 98.93 96.69 94.84 93.90 91.86 94.40 94.28 97.60 91.89 98.10

Tile 99.40 100.00 100.00 94.13 89.41 94.96 98.63 98.77 98.48 100.00 99.88 98.70

Toothbrush 98.60 100.00 100.00 97.48 97.48 97.16 98.06 98.06 98.33 91.90 99.65 100.00

Transistor 91.10 94.08 93.92 97.03 97.74 96.95 96.88 96.83 96.88 99.30 95.21 100.00

Wood 99.80 99.83 100.00 94.92 94.13 95.67 99.39 99.47 99.65 100.00 99.12 99.20

Zipper 95.10 96.30 95.88 98.68 97.36 98.69 88.87 92.31 88.05 99.70 98.48 98.80

Avg AUROC 94.69 96.67 96.97 97.03 95.51 97.10 97.80 98.21 97.91 98.72 98.26 99.06

Table 3. Comparison of area under ROC results in % on MVTec AD dataset. Bold font indicates the best category result, while underlined

values show the best result between DifferNet variations. RN18 refers to the network backbone, ResNet-18.

Category DifferNet
AttentDifferNet-SE

(Ours)

AttentDifferNet-CBAM

(Ours)

FastFlow

(RN18)
CS-Flow CFLOW-AD PatchCore

Street 86.40 90.44 84.53 80.94 97.19 70.86 79.26

Chip 91.09 89.96 93.39 76.27 90.31 92.01 93.90

Average AUROC 88.74 90.18 88.96 78.60 93.75 81.44 86.58

Table 4. Comparison of area under ROC results in % on Semiconductor Wafer dataset. Bold font indicates the best category result, while

underlined values show the best result between DifferNet variations.

self, both in objects and texture categories.

4.5. Ablation

We performed a brief ablation study to assess the impact

of different combinations of attention blocks added to the

model architecture. It consisted of training the proposed

AttentDifferNet by removing the attention blocks AB1, AB2,

and AB3 (shown in Figure 2) from the model architecture in

all possible combinations. Table 5 shows the study results

using the Glass Insulator object from the InsPLAD-fault

dataset. Note how using only one attention block instead of

none does not yield better results, but using two attention

blocks instead of one results in improved results on average.

It is also noteworthy that placing the attention block in later

layers appears to cause a greater impact on AUROC.

AB1 AB2 AB3 AUROC [%]

✗ ✗ ✗ 82.81

✓ ✗ ✗ 80.85

✗ ✓ ✗ 81.64

✗ ✗ ✓ 82.85

✓ ✓ ✗ 83.17

✓ ✗ ✓ 82.32

✗ ✓ ✓ 84.91

✓ ✓ ✓ 86.57

Table 5. Area under ROC results in % for our ablation study

showing different combinations of attention blocks considering the

Glass Insulator category from InsPLAD-fault.

5. Conclusions and Outlook

The main hypothesis of this work was that attention mod-

ules help to improve the performance of state-of-the-art

anomaly detection methods in an in-the-wild/uncontrolled

environment scenario. We proposed AttentDifferNet, an un-

supervised anomaly detection method based on distribution

mappings through normalizing flows that benefits from atten-

tion mechanisms by strategically coupling modular attention

blocks to its feature extraction step. AttentDifferNet achieves

image-level state-of-the-art performance on InsPLAD-fault,

an anomaly detection in-the-wild dataset. We also experi-

mented with attention-based versions of two state-of-the-art

anomaly detection methods in a similar fashion to DifferNet,

FastFlow and RD++. Generally, the attention-based versions

of FastFlow and RD++ present an increase in performance

compared to their standard versions. We also show that

AttentDifferNet not only maintains the model performance

compared to DifferNet in controlled environments, but can

also improve in virtually all categories of two relevant con-

trolled environments’ datasets for anomaly detection: the

MVTec AD and the Semiconductor Wafer dataset. Our

qualitative analysis supports the improved quantitative per-

formance, showing that the proposed network can focus on

the object to be inspected when in the wild. In a controlled

environment, it focuses on the defect.

This work implies that state-of-the-art unsuper-

vised anomaly detection methods have limitations in
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Input images

DifferNet

AttentDifferNet (Ours)

Figure 5. Exemplary Grad-CAM-based class activation mapping comparison (blue to red scale, where blue means lower activation and red

means higher activation) for DifferNet’s backbone versus AttentDifferNet (SENet)’s backbone in all five categories from InsPLAD-fault:

Glass Insulator, Lightning Rod Suspension, Polymer Insulator Upper Shackle, and Vari-grip, respectively.

Input images

DifferNet

AttentDifferNet (Ours)

Figure 6. Exemplary Grad-CAM-based class activation mapping comparison for DifferNet’s backbone versus AttentDifferNet (SENet)’s

backbone given seven categories from MVTec AD from left to right: Capsule, Grid, Screw, Transistor, Leather, Pill, and Cable.

uncontrolled/in-the-wild environments. It also portrays how

the usage of attention blocks is well-suited to deal with such

limitations and their potential to improve anomaly detection

analysis at a pixel level with only image-level annotations.
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