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ABSTRACT
Performing detection and pose estimation of objects in six degrees
of freedom (6-DoF) is a widely studied challenge in virtual and
augmented reality, robotics and computer vision. For simulation
and testing of the Brazilian voter terminal, its pose could allow
automatic testing/auditing with robotics arms or virtual reality
applications to simulate the voting process. For pose estimation
using deep learning, it is necessary to generate large amounts of
annotated real data, which is a costly task in time and resources.
One way to avoid this issue is to create synthetic data through
domain randomization, using 3D object modeling, to train the pose
estimation technique with a reduced amount of annotated real data.
In this work, domain randomization was utilized to generate a
synthetic dataset, starting from a 3D model of the voter terminal,
varying the lighting settings, camera position and distract insertion,
to verify what impact this randomization has on training a single
shot algorithm to perform the detection and pose estimation of
this terminal in a different scenario. The new dataset with real and
synthetic data from the voter terminal was built and will be publicly
available.
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1 INTRODUCTION
The 6-DoF object pose estimation is essential in several applica-
tions, such as augmented reality, robotic manipulation, autonomous
vehicles, and others. For example, it is necessary to provide visual in-
formation about the environment to increase the user’s perception
of the real world in AR applications, control the robot’s movements
and actions to avoid collisions when manipulating objects, or guide
autonomous vehicles on the streets [4][22].

This type of task is divided into sub-tasks: detection and tracking.
The first one finds the object of interest in a given scene without
any previous information about the object’s position and initial
orientation. In contrast, given an initial pose, the tracking follows
the object in a sequence of frames, using the previous information
to predict a new one if the object is moving. Therefore, machine
learning is a category of algorithms popularly used to estimate the
object’s pose. Machine learning enables the algorithms to learn
features on the images to extract relevant information from the
object, from the scenes’ particularities, and to conduct correlations
with previously acquired information [4].

To perform this task, it is necessary to generate large amounts
of annotated data, which costs a lot of time and effort. A way out of
this issue is to use synthetic data, through 3D CAD models of the
object, to complement the algorithm’s training by passing non-real
scenes [23] [21] [4]. Thus, domain randomization is a type of data
generation algorithm that helps create artificial datasets by creating
different scenarios when generating each image, such as varying
lighting settings, object position and distracts, among others.

This work focuses on the problem of automating the audit of the
Brazilian electronic ballot operation. This type of audit takes place
every two years in Brazil and there has been a recent increase in
the number of Brazilian machine votes audited, increasing the cost
and number of people necessary to carry out this audit task. With
that, we tested a detection algorithm proposed by Cunha et al. [5]
aided by a robotic arm to help in the automation process. Therefore,
it is essential to use the detector to provide visual information to
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assist the robot in manipulating the voter terminal keys. Neverthe-
less, the extracted data can be useful for the development of new
AR applications for analyzing the voting process or for training
voters. By providing the spatial knowledge gathered from the pose
estimator, we can also assist inspectors in checking the results of
the automatic audition.

To help with network training, it was necessary to create datasets
of the Brazilian voter terminal, both synthetic and real since this
type of object is not publicly available. Virtual samples were cre-
ated from 3D modeling, varying the position and orientation of the
camera, including distracting objects to cause occlusion and shad-
ows and changing the environment by adding lights with different
sizes, colors, and intensities. Two datasets (train and test) were also
generated with real images from this ballot to verify the impact
of inserting the synthetic dataset when testing the algorithm in a
different case not seen in the training. All datasets, weights, and
models are available in a Google Drive folder of the university1.

Several internal processes of the Brazilian Regional Electoral
Courts (TREs) are undergoing a digital transformation, with dif-
ferent types of applications emerging in the most diverse areas, as
shown at the Expojud event in Brasília 2. Making these datasets
available can help future applications, thinking of ways to do a
virtual poll, for example.

The contributions of this work are:
• Construction and availability of the first Brazilian electronic
ballot box dataset containing RGB information, depth, and
point in the image related to the robot’s base;

• Construction and availability of the first synthetic dataset
of the electronic ballot box, as well as the models used to
generate this dataset;

• Implementation and adaptation of the pose estimation tech-
nique, using domain randomization, for the automation sce-
nario of the electronic ballot box auditing process;

• Quantitative evaluation of the pose estimation technique
with the electronic ballot box.

2 AUDIT OF THE BRAZILIAN ELECTORAL
SYSTEM

Previously known as parallel voting, in 2018, the “Audit of the
Functioning of Brazilian Electronic Ballot under Normal Conditions
of Use” aims to demonstrate the operation and security of the
Brazilian electronic voting system being carried out by the Electoral
Justice. This process takes place in each state, starting one month in
advance of the official election date, and is initiated by the Regional
Electoral Courts (TREs), which need to appoint an Audit Committee
on the Operation of Electronic Voters. This commission is composed
of a judge of the law, who is the president of the section, and
at least six civil servants from the Electoral Justice, at least one
from the Regional Electoral Internal Affairs, one from the Judiciary
Secretariat, and one from the Information Technology Secretariat.
[18].

On the eve of the elections, the Electoral Justice draws, in a public
ceremony, the polls audited according to the number of sections

1https://drive.google.com/drive/folders/1UZ_1-SpYdwBGI9QNYR29ksYJ1M4UzR0d?
usp=sharing
2Expojud event link: https://www.expojud.com/

present in that federative unit of the draw. Even on this day, these
randomly selected ballots are removed from their original sections
and installed in the chosen spaces, where these spaces are equipped
with recording cameras. The commission must provide ballots,
having the number of such ballots between 75% and 82% of the
number of registered voters in the respective polling station. These
ballots must be filled out by representatives of political parties and
coalitions and kept in sealed canvas boxes so that on election day,
these ballots are typed into a computer with a parallel system to, at
the end of this election, compare the Ballot box printed, with the
auxiliary system bulletin [18].

As of 2022, there was an increase in the amount of necessary
sampling of equipment to carry out the aforementioned process.
This increase was due to changes proposed by the federal police,
thus editing 2 articles of TSE resolution nº 23.673/2021, in order to
increase transparency and scope throughout the electoral process.
So, with this change, the ballot boxes were selected as follows:
federative units with 15,000 sections or less, 23 sections would be
drawn, the first 20 ballot boxes would be submitted to the Integrity
Test, units between 15,001 and 30,000 sections would be drawn 35
ballot boxes, 27 of which for the Integrity Test, in the other units
43 sections would be randomly selected, 33 ballot boxes from that
total to be submitted to the Integrity Test. All other ballot boxes
that were drawn and that were not included in the integrity test
were automatically submitted to the Electoral Systems Authenticity
Test [19].

In the current circumstance, given this increase in samples, an
opportunity arose to develop an automated audit process using
robotic arms. The main objective of this automation was to reduce
the number of people needed at the time of the audit, where the
robot both enters the voter’s registration number into the terminal
and then types the votes into the ballot box, being able to utilize
this work for the fine-tuning of the robot’s position when pressing
the keys on the voter’s terminal.

3 BACKGROUND
This section discusses some basic concepts about object tracking
and detection in six degrees of freedom (6-DoF).

3.1 Object detection and tracking in six degrees
of freedom (6-DoF)

An object’s pose, in computer vision, refers to its position and ori-
entation relative to the camera’s coordinates. The object’s pose can
change by estimating the relative movement between the object and
the camera, moving the camera or the object. The object pose can
be described by its location and orientation to the environment. The
location, or translation, is composed of the 3D spatial coordinates
(X, Y, and Z axes). The rotation describes the object orientation
relative to the camera and can be represented, for example, by the
Euler angles (roll, pitch, and yaw) [13].

When you know the camera’s intrinsic parameters (e.g., focal
length, optical center, distortion parameters) and the object’s 3D
points with their correspondent 2D projection in the image, it is pos-
sible to estimate the rotation vector (r = (𝑟𝑎, 𝑟𝑏 , 𝑟𝑦)) and translation
vector (t = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧)), where they represent the relative motion
between the camera and the object [13][4].
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Figure 1: Projection of the 3D camera points and the actual
coordinates relative to the 2D image [13]

According to Mallick [13], in Figure 1, the origin point is the
center of the camera, the plane references the 2D plane of the image,
and it is necessary to find the equations that project the point P of
the 3D coordinates of the world relative to point p in the 2D image
plane.

Assuming one knows the coordinates of point P in the world (U,
V, andW) and also knows the rotationR (3x3matrix) and translation
t (3x1 vector) compared to the camera coordinates, one can calculate
the location (X, Y, Z) of point P in the camera coordinate system
using the following Equation 1 [13]:
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The expansion of the equation is shown in Equation 2:
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If a sufficient number of corresponding points ((X, Y, Z) and (U,
V, W)) are known, a linear system of equations can be computed,
where 𝑟𝑖 𝑗 and (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) are unknowns and can be solved trivially
[13].

The 6-DoF pose estimation task consists in detecting and/or
tracking a 3D object in an image by using the three degrees of
freedom in both the rotation of the object and the three degrees of
freedom in its translation, thus estimating the pose in six degrees
of freedom or 6-DoF. Estimating the 3D object’s pose by composing
the rotation and translation in a 3x4 pose matrix [4] is possible.

Tekin et al. [15] divide pose estimation into 3 (three) groups,
namely:

• Classical methods: using classical computer vision techniques.
• RGB-D based methods: Due to the emergence of cameras
with depth sensors.

• CNN-based methods: that make use of Convolutional Neural
Networks.

The classical methods use local key points and model feature
correspondences. Some other such model-based methods are Haus-
dorff matching [8], edge-oriented chamfer matching [20], and 3D
curve-based chamfer matching [10], for example.

With RGB-D methods came proposals for matching algorithms
using models suitable for color images with the depth sensor. Ex-
tensions of this work used discriminative learning for cascade de-
tection, increasing detection accuracy. Robots have also used these
methods for 3D object recognition, pose estimation, and manipula-
tion [15].

CNN methods use techniques such as ViewPoints, Keypoints,
and Render for CNN, categorizing 3D objects and estimating their
pose. Another example given by PoseNet [9], is to regress the RGB
image to a 6D pose, even though estimating the camera pose is a
slightly different task. Single shot architectures like YOLO and SSD
also appear in this group by predicting the 2D projections of the
corners of the 3D bounding boxes [15].

4 RELATEDWORKS
The computer vision community widely studies the problem of
adapting vision-based models from one domain to another. Gener-
ally, machine learning models need a set of samples to learn features
about a specific task, and mapping these features to different do-
mains is a challenge; each model needs to be retrained based on
the target domain statistics available. Some approaches investigate
how it is possible to create generalizable models, learning invariant
features across domains without creating a new dataset for each
one [16].

Obtaining labeled samples is one of themost significant problems
when training machine learning models in a new task. It demands
a lot of time and effort; the dataset must be manually annotated for
each object and environment. One solution to this kind of problem is
domain adaptation and transfer-learning, where usually the source
domain has a different distribution than the target domain (𝐷𝑠 ! =
𝐷𝑡 ), making it possible to reduce the impact of obtaining data and
reusing available information. [4].

More recent approaches use synthetic data generation for train-
ing with domain adaptation, a type of transfer learning. Previously
acquired knowledge is transferred to a new data set by mapping
and using the information from the source domain. This kind of
approach is most often used in DNN architectures. An alternative
is to use domain randomization to generate more robust synthetic
datasets to reduce the reality gap and be able to do proper training
for the model, reducing the use of real datasets for a given problem
[17].

Rozantsev et al. [12] used an algorithm capable of learning the
parameters that define the environment using a set of real data. The
main goal was to decrease the reality gap between the synthetic
domain by developing several scenarios that simulated the vari-
ations of the target domain, such as illumination, occlusion, and
reflection, where the object labeling was done automatically.

Kendall et. all [9] used a deep neural network architecture based
on GoogLeNet, which is a pose regression network. This cited con-
volutional network uses 22 layers with six initial modules and two
additional intermediate classifiers, which are discarded when test-
ing the network. The modification made by them adds one more

58



SVR ’23, November 06–09, 2023, Rio Grande, Brazil Norberto, et al.

layer than the original, counting only the layers with training pa-
rameters. As a result, the three softmax classifiers were replaced by
affine regressors, connecting the removed part to each final layer,
producing a 7-dimensional pose vector representing 3 dimensions
for position and 4 dimensions for orientation of an object. Another
modification was in the input image, resizing it to 256 pixels, be-
fore performing the 224x224 cut in this image, when entering the
GoogLenet network. Using parallel GPU processing, they achieved
an increase in computational time from 5ms to 95ms per image.

Su et. all [14] presented an approach using a convolutional neural
network, training it exclusively on synthetic images of a channel of
objects, with the object of directly regressing the poses of these 6-
DoF objects (SynPo-Net). The SynPo-Net proposal is to be a specific
network architecture for object pose regression and a proposed
domain, and adaptation scheme, transforming real and synthetic
images into an intermediate domain, and adapting it to establish
correspondences with each other. This system, they say, can be
used to estimate the pose of an object in 6-DoF from a single frame
or be integrated into a tracking system to provide an initial pose
for that system.

By generating a larger number of random variations in the syn-
thetic dataset, some authors [3] [16] have claimed that domain ran-
domization can decrease the impact of training using these types of
data when performing 2D object detection. Cunha [4], for example,
proposed to adapt these procedures involving the synthetic dataset
generation to the case of 6-DoF object pose estimation, training
a CNN to estimate the object’s pose. He proposed using domain
randomization to improve object detection and tracking using the
single-shot algorithm. In this case, it was printed 3D textureless
objects placed in a scenario with several background objects and
occlusions. It was possible to improve the training result using
the synthetic dataset generated with the proposed randomization.
The difference for this work is that it used a large textured object,
where it was necessary to perform 3D modeling to achieve training
improvements using domain randomization.

5 METHODOLOGY
With the lack of availability of datasets from the Brazilian voter
terminal, it was necessary to build a new one containing different
variations related to the voting use case. So, it was possible to
proceed with the study. In the next subsections, it is explained how
each dataset scenario was built, starting with the synthetic dataset,
made from the 3D modeling, until the second real dataset, made
from the equipment provided by TRE-PE to the Federal University
of Pernambuco.

5.1 Synthetic dataset
5.1.1 3D modeling of the voter terminal. Initially, to create the
annotated synthetic dataset, a 3D modeling of the voter terminal
was performed using the CAD 3D Inventor software 3. Inventor
is a software that offers professional tools for mechanical design,
documentation, and simulation of products [2]. All terminal mea-
surements were verified to create a reliable 3D model.

3https://www.autodesk.com.br/products/inventor/

By fixing the world coordinate system with the origin at the
lower right corner behind the terminal, we could map the corre-
spondent annotation in the image plane. From this, it was possible to
keep the front view, with the buttons and the terminal screen, point-
ing toward the viewer. Taking the terminal’s base as a reference,
it has a value of 39.70 centimeters long (Y-axis), 13.65 centimeters
high (Z-axis), and 26.94 centimeters wide (X-axis), as follows in the
figure 2.

Figure 2: X, Y, Z axes to reference the size of the voter termi-
nal.

On the front, an inclination angle of 45º was identified relative
to the base, with a length of 19.30 centimeters, leaving at its top
the value of 13.30 centimeters in length, as follows in the figure 3.

Figure 3: Degree angle sample on the front of the terminal.

The terminal has a screen width of 21.8 centimeters with a height
of 13.5 centimeters, arranged at a distance of 1.6 centimeters from
its leftmost edge. The keyboard is placed on a panel 13 centimeters
wide and 13.7 centimeters high. Each key is 2 centimeters wide and
1.5 centimeters high, except for the keys confirm, correct, and blank,
each 3 centimeters wide and 1.5 centimeters high, the confirm being
the tallest at 2 centimeters high. The picture 4 shows the final model
made from all these parameters.

5.1.2 Synthetic dataset generation. The creation of the annotated
synthetic dataset was done using Blender 4. Blender is an open-
source 3D object creation software that can perform modeling,
animation, texturing, compositing, rendering, and video editing
[1]. Also, it can create scenarios and run Python scripts, managing
to automate the domain randomization process. This execution of
4https://www.blender.org/
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Figure 4: 3D final model of the voter terminal

scripts aligned with external libraries facilitates the loading and
construction of new scenarios using 3D object modeling.

To avoid problems with the rotation and size of the object, when
annotating the poses, the 3D model file from the elector terminal
was imported into a blank project in Blender. Then, the object
scale and orientation were adjusted to match the virtual camera
coordinates since the Blender coordinate system considers inverted
Z and Y axes compared to traditional computer vision software.

All the proportions of the voter terminal weremaintained through-
out the process; the only change made was in the scale of the object,
putting, in Blender, a scale in the X, Y, and Z axes from 1 to 10, thus
transforming measures that were, for example, 0.130 meters to 1.30
meters. This increase helps when capturing the object because it
visually increases its size keeping the original proportion, taking
better advantage of the textures placed during the randomization
in the scene.

A total of 3001 images were generated for this dataset with a
680x680 resolution, splitting this total of images into 2101 images
for training and 900 images for validation, with the following ran-
domization configuration: the voter terminal is initially in the center
of the scene origin. The camera always looks at its front. The scene
takes place inside a skybox, where random textures are inserted
in all internal faces of the box (top, floor, right side, left side, front,
and back). A random number of point lights are inserted initially,
ranging from 5 to 40 in the scene, alternating colors, intensity, and
ranges. A simulation of the sun’s illumination was also inserted,
alternating the position and incidence of this illumination on the
object.

Distractor objects with defined geometries (cubes, spheres, toroids,
pyramid) may or may not be inserted in the first capture to cause
some occlusions or shadows. At each new capture, the camera is
in a different position from the previous one. It can capture at any
angle at which the object is visible, varying the distance. Distractors
may or may not cause occlusions or shadows on the object, varying
the amount they appear. In this new capture, the lights also change
in number, intensity, size, and color. Figure 5 briefly exemplifies
this dataset generation process.

5.2 Real Dataset
With the intention of comparing the synthetic data and the real
data, a dataset with real ballot box images was built for this paper,

as there were no datasets available at the moment. Eighteen printed
ARucos markers were placed around the voter terminal, in order
to minimize the position variation with the visible markers. This
number of markers was necessary to improve the accuracy of the
6-Dof pose annotation using the [7] program, because this is a large
object and ends up making a lot of occlusions in the ARucos when
changing capture positions. The Kinova Gen3 Lite robot shown in
figure 6 with predefined movements was used to standardize the
way each variation of the dataset was captured.

An Intel Realsense l515 camera was attached to the robot’s claw
using a 3D printed holder, responsible for capturing the RGB images
in 640x480 resolution and the correspondent depth image, with
the two images already aligned in each capture. To perform this
capture and annotate the position of the voter terminal, the f2wang
program [7] was used, being an open source program for automated
annotation of objects in 6-DoF, which uses information from depth
images to tell where the object is in the image, and it refines this
pose by detecting the markers in the scene.

To use thementioned program, the 3Dmodel built in the previous
section was used, which helps in defining the position to generate
the object’s mask. It was also necessary to update a small part of
the code that used the ARuco detection since there was a change
in the way this detection is used by the OpenCV library in newer
versions.

To achieve variations of these captures, some changes were
made to the environment, to have a greater amount of captured
images. Initially, the voter terminal was captured at a distance of
67 centimeters from the base of the robot, using artificial lighting
with a yellow tone and a window closed. In this same scenario, a
second variation was built turning off the ambient lights and using
only the natural light of the room itself, without having to open
the previously mentioned window. Examples of these two setups
are shown in Figures 7a and 7c.

A third variation was to place the hand, close to the buttons, to
make a small occlusion, using the lighting with a yellowish tone
again, this occlusion was thought of as a common use of the urn
itself. Finally, a closer capture of the robot was made, reducing the
distance from the base from 67 centimeters to 56 centimeters, using
the yellowish lights again with the window closed, as shown in
Figures 7d and 7b.

When performing each capture, a script created in Python, using
the robot’s own ROS libraries, saved the positions of the claw tip
related to the robot base. This information was not used at the time
but was made available along with the dataset. As an extra point,
the translation and rotation of this gripper point to the camera
sensor point concerning the robot base was also carried out. This
translation was performed by measuring the distance of the grip
point about the position where the camera sensor was fixed, as
shown in Figure 8.

First, the translation was applied concerning the base of the
robot, without worrying about the attachment angle of the gripper,
reducing the X position in each capture by 0.065 meters, since the
positive X is towards the front of where the gripper was positioned,
and there was an increase of 0.083 meters related to the robot’s base
Z, since the higher the point, the greater the Z value for that robot.
The idea is that when the robot’s attachment angle is in the position
𝜃X at 90º, 𝜃Y at 0º and 𝜃Z at 90º, only the translation affects the
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Figure 5: Randomized dataset creation flow

Figure 6: Robot Kinova gen3 lite used to capture the dataset
with support and camera

position of the sensor point because with these settings the gripper
is aligned forward to the base of the robot.

After performing this translation, the current attachment angle
of the gripper was verified for that position, applying the rotation
of this new point following the rotation matrices for the X, Y, and
Z axes respectively. As the reference angles are 90º, 0º, and 90º for
the X, Y, and Z axes, before applying the rotation to the new angle,
the difference between the current angle of the gripper and these
reference angles is made. All these transformations were performed
from a script created in Python using the Scipy and Numpy libraries,
building the rotation matrix in each saved position and finding the
new points in the captured frames.

The separation of the dataset was as follows: the images with
variation in light and proximity were used to train the network
(totaling 2083 labeled images), and the images generated with oc-
clusion using a hand were used to validate the network during

(a) Yellow light (b) Closer

(c) Without light (d) Hand occlusion

Figure 7: Differences between captured datasets.

training (totaling 633 labeled images). So, a total of 2716 labeled
images were generated.

5.3 Test Dataset
A fifth set of captures of the real voter terminal was performed
during the execution of this work, as a way of having data to test
the weights generated during training. The main objective is to
verify how the training variation affects the pose estimation, in a
different scenario never seen before.

In these captures, the same robot was used with the same move-
ment, but the environment had less lighting, as it was getting to
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Figure 8: Distance of camera sensor to gripper point

the end of the day, and the lights in the room remained turned off.
Another point of difference was in the captured resolution, starting
from 640x480 to 960x540 both in the RGB image and in the depth
image, having a total of 451 images annotated. Figure 9 shows an
example of this dataset.

Figure 9: Voter terminal in a different scenario.

5.4 Pose Estimation and Domain
Randomization

To perform the detection and pose estimation of the voter terminal,
it was used the approach proposed by Tekin et al.[15] and updated
by [5]. The approach is based on the single shot 2D object detector
network named Yolo9000 [11]. The Tekin[15] work extends the
Yolo architecture to predict the 2D projections of the corners of
the 3D bounding box around the object. After obtaining these 2D
coordinates and knowing its correspondent 3D points from the
object’s CAD model, it is possible to compute the 6D pose using an
efficient PnP algorithm[11] (assuming that the camera calibration
was performed and the camera’s intrinsics values are known). From
this extension, [5] updated the network inputs, adding the camera
intrinsic parameters and the projection coefficient, enabling it to
use multiple camera types.

When using the synthetic dataset and the real dataset, it was
necessary to update the structure of the saved pose annotations,
inserting correctly the detected object class at the beginning file,
organizing the pose estimation data of each image following the
needs of the network and separating the training images from the
valid images. For the partitions, approximately 70% of the samples

were used for training images and 30% for validation in both cases.
A .ply file was also generated from the 3D CAD model of the object,
used to capture the projection metrics for the voter terminal during
training.

For the generation of synthetic images, this work followed the
domain randomization method proposed by [6]. This method fol-
lows the following structure for this randomization: one object on a
flat surface positioned at the origin of the scene, one camera always
pointing to the origin, varying its generation location in each scene,
up to 5 floating distractors that appear at random locations to make
occlusions in the object, up to 15 point lights varying position and
color at each scene generation. All these objects are contained in a
skybox (50-meter skybox cube), causing the camera to change its
radial distance from the object from 4 meters to 10 meters, azimuth
angle from 0º to 180º, and polar angle from 0º to 360º. There was a
variation of textures both in the plane in which the object was, and
in the internal faces of the box, using the same textures proposed
by the work mentioned. The intrinsic parameters of the cameras
and the output size of the images were configured to simulate the
parameters of the real cameras used in the mentioned work, as well
as the exclusion of images where the object was with occlusion
greater than 35% of its total, but these two last configurations were
not made to generate the images of this paper.

6 RESULTS
The following metrics were used to evaluate the performance of the
detection algorithm proposed by [5], following what was done in
[15], using the dataset generated in the methodology of this work.
The mean corner error is taken by computing the 2D distance of
the ground truth values with the predicted points in the image.
The 2D Projection accuracy is based on the re-projection accuracy
(Rep.), which checks the ground truth with the mean 2D Euclidean
distance predicted by the model and considers the value correct if
this 2D projection of all mesh vertices is smaller than a threshold
defined in pixels (i.e., 10 pixels). As shown in [5] the definition of
this metric is 𝑋2𝐷 = 𝜋 (𝐾 · 𝐸 · 𝑣), being 𝐾 the 3x3 intrinsic camera
matrix, 𝐸 is the 3x4 extrinsic parameter matrix (3D objects rotation
and translation), 𝑣 is a vector with CADmodel vertex homogeneous
coordinates.

3D transformation accuracy (ADD) is related to 3D Pose Accu-
racy being detailed as 𝑃𝑒 = 1

𝑁

∑𝑁
𝑖=0



(𝐸𝑝𝑟 ·𝑉𝑖 ) − (𝐸𝑔𝑡 ·𝑉𝑖 )


 by [5],

where the set 𝑉 of length 𝑁 being average 3D Euclidean distance
between mesh vertices, 𝐸𝑔𝑡 as 6DoF ground truth, 𝐸𝑝𝑟 is the pre-
dicted pose, having the accuracy of the pose if 𝑃𝑒 < 0.15𝑑 , where 𝑑
is the maximum distance between the vertices of the two meshes,
showing the accurately the algorithm is estimating the object’s
pose in the scene. The translation error has to do with the average
of errors of the predicted translation vectors and the angle error is
related to the predicted rotation vectors, this value also being the
average after the execution of the algorithm in the test images. For
evaluation purposes, smaller values shown in the metrics related
to errors are better (i.e., mean corner, translation, and rotation er-
rors), while larger values related to the mentioned accuracy (i.e.,
2D projection and 3D transformations) are better.

All experiments mentioned in this work used a desktop with an
Intel Core I7-12700 processor with 12 physical cores at @3.80 GHz
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frequency, 64 GB of DDR5 RAM at 4000MHz, 2TB SSD HD with
7000 MB/s W/R and 8GB Nvída Geforce RTX3070 Ti graphics card.

In the first generations of training inspired by [6], 1000 images
were created from the synthetic dataset, performing a rotation
movement through the voter terminal, with approach and distance
from the camera, varying the amount and colors of lights, but no
distracts were placed. Besides this rotation movement, a movement
from top to bottom was also performed to have more variations in
the poses of these images. This amount of images was not enough
to train the network correctly, because the results of the train stay
under 50% when the validation is the same synthetic scenario.

To improve the results, first, there was an increase in the amount
of annotated images artificially generated, going from 1000 images
to 3000 images, aiming to avoid a possible underfit in the training.
Another point that changed was the way of capturing this dataset,
now with random poses around the object, so that there were more
distinct poses, both for training and testing. Distractors were placed
during the process, to cause some occlusions and shadows on the
object, thus increasing the variance of the generated dataset. All
configurations can be seen in Table 1.

Table 1: Configuration for generating the second synthetic
dataset

INFORMATION VALUE

Number of images 3001
Camera movement Random around the terminal
Angle camera Random with terminal always

visible
Range number of lights Between 5 and 40
Light intensive range Between 50 and 2500
Changing position lights Yes
Sun angle range Between 2º and 10º in relation

to the terminal
Sun incidence on the scene Between 1 and 3
Variation sun’s positions Yes
Distractors Yes
Number distractors Between 1 and 10

There was also the control on the rotation of the 3D model ex-
ported from the voter terminal, adjusting the X, Y, and Z axes,
according to the dataset generation program and also the pose de-
tection and estimation program, as mentioned in the methodology
section. The batch settings, image size, channels, and the number
of key points were kept the same as the first dataset generation,
only augmentation was used during this new training, increasing
and decreasing the amount of image noise during the run. With
this fine-tuning, it was possible to reach a result of 95.33% in the
2D projection and 90.44% in the 3D transformation, as shown in
Table 2 for the dataset in the synthetic generation.

The next step was to train with real images of the voter termi-
nal, so with the real dataset using 2083 images, already with its
respective generated mask, it was possible to train the network and

Table 2: Generation of training controlling export rotation,
increasing dataset, and performing augmentation

INFORMATION VALUE

Mean corner error 5.37
Acc using 10 px 2D Projection 95.33%

Acc using 1.19 vx 3D Transformation 90.44 %
Translation error 1.37 m

Angle error 3.35 degrees

(a) Ground truth (b) Synthetic (c) Real

(d) 50%/50% (e) 30%/70% (f) 70%/30%

Figure 10: Pose estimation of ballot using the different sce-
nario.

obtain the following results shown in Table 3 looking at the same
scenario to which it was trained to validate.

Table 3: Generation training using real annotated terminal
images

INFORMATION VALUE

Mean corner error 6.21
Acc using 10 px 2D Projection 89.57%

Acc using 1.19 vx 3D Transformation 97.63%
Translation error 0.65 m

Angle error 2.10 degrees

For this specific training scenario, the algorithm proved to be
quite robust, being able to identify the terminal well and estimate
its pose correctly, reaching a little over 89% in the 2D projection
and 97% in the 3D transformation using only real images in the
training.

The first experiment was to test the result of the training per-
formed only with real images of the voter terminal itself. Then,
using the test dataset, being the one built with a resolution and
lighting very different from the training one, it was possible to
estimate the voter terminal pose as shown in Sub-figure 10c, with
some error about the fundamental truth.
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Table 4: Result of testing domain randomization in 6-DoF pose detection and estimation in a different training scenario.

INFORMATION S50-R50 S70-R30 S30-R70 Real Synthetic

Mean corner error 11.14 10.88 11.10 9.75 43.59
2D Projection 79.16% 73.84% 62.53% 51.00% 0.22%
3D Transformation 71.62% 61.20% 95.34% 94.90% 38.36%
Translation error 1.54 1.87 1.03 1.13 9.31
Angle error (degree) 7.73 7.29 7.11 5.45 33.36

Table 5: Result of testing domain randomization in 6-DoF pose detection and estimation in the same training scenario.

INFORMATION S50-R50 S70-R30 S30-R70 Real Synthetic

Mean corner error 10.65 11.59 8.45 6.21 27.09
2D Projection 50.39% 50.39% 77.88% 89.57% 0.47%
3D Transformation 82.15% 76.78% 98.10% 97.63% 75.04%
Translation error 1.86 1.75 0.80 0.65 27.09
Angle error (degree) 3.31 3.36 2.56 2.10 15.77

A second experiment performed was to use only synthetic data
for training, in the test with the already mentioned set of images.
In this scenario, it was possible to notice that the network comes
very close to having good detection, but with high error numbers,
compared to training only with real images. Figure 10b shows an
example of this result.

The next experiment was to use 50% of the total images of the
real voter terminal and 50% of the total images of the modeled voter
terminal. This was a more balanced scenario, which visibly had a
similar result compared to training using only the real images, as
shown in Figure 10d. Still, when we see the results expressed in
numbers, it managed to do better in the 2D detection of the voter
terminal, reducing the estimation of the 3D corners a little.

Another verified point was to decrease the percentage of real
images to 30% and increase the rate of synthetic images to 70%.
This new scenario had a slightly lower result when compared to
the previous result (50% and 50%). There was not much change in
the display of the pose estimation, as shown in Figure 10e.

Finally, the inverse mixture of the previous experiment was
performed, that is, 70% of the real images of the urn in training
and 30% of the synthetic images were used. In this scenario, it was
possible to have a better result compared to the previous ones, since
it obtained 62.53% in the 2D detection, surpassing the training with
only real images, and 95.34% in the estimation of the 3D points of
the bounding box, surpassing all the others. Visibly, it is also what
shows the best pose estimation as in Figure 10f.

To facilitate the comparison and visualization of the obtained re-
sults, Table 4 shows the results of each training using the following
terminologies:

• 50% of the synthetic dataset and 50% of the real dataset is
S50-R50;

• 70% of the synthetic dataset and 30% of the real dataset is
S50-R50;

• 30% of the synthetic dataset and 70% of the real dataset is
S50-R50;

• Only using synthetic images of voter terminal is called syn-
thetic;

• Only using real images of the voter terminal is called real.
As a last experiment, a comparison of the results obtained be-

tween the training sessions was carried out to verify their impact
in relation to the validation dataset, that is, the dataset with the
same scenario and the same resolution used in the training. Table 5
shows the values obtained for each of the weights, following the
same logic as Table 4 presented above.

It was possible to verify in the table 4 that there was satisfactory
performance in all of the models, even when inserting the synthetic
dataset in the training. Results show that by adding a controlled
amount of synthetic images, it was possible to improve the results,
rising from 51% to 79.16% in the 2D Projection, and from 94.9%
to 95.34% in 3D Transformation compared with train using only
real images of terminal voter for a different scenario of training.
For a similar scenario (training and testing in the same scene) the
insertion of synthetic data ended up reducing the 2D projection
values, but in the 3D transformation metric, training with 30%
synthetic data and 70% real data ended up increasing the value to
98.10%.

6.1 Discussion
Based on the results obtained in the use of domain randomization to
generate synthetic data from a 3D model of the Brazilian electronic
ballot, it was possible to perceive that using only the synthetic
dataset became unfeasible in the scenarios proposed by this work.
This is probably related to the type of object used in the generation
of these annotated images, as a 3D model of the object was used and
not its reconstruction, possibly widening the reality gap between
them.

In the first experiment, with the testing scenario different from
the training scenario, it was possible to verify that the generated
models could perform the pose estimation satisfactorily and that
using the synthetic data in training improved the task. Analyzing
the results of the model generated only from the real dataset, it was

64



SVR ’23, November 06–09, 2023, Rio Grande, Brazil Norberto, et al.

verified that when adding controlled amounts of synthetic images
(30% of the total value of synthetic images), the accuracy improved,
going from 51.00% in the 2D projection to 62.53% and 3D transform
from 94.90% to 95.34%.

When the synthetic dataset is inserted together with the real
dataset, for algorithm training, in the experiment where the test
images are related to the training images, it is noticed that there
were losses related to the 2D projection compared to training done
only with real data. This reduction could be directly related to
the reality gap problem. It is noteworthy that in this scenario the
training using 70% of real images and 30% of synthetic images
still obtained a better result related to the 3D projection when
compared to training only with real images, going from 97.63%
to 98.10%, showing a possible future improvement, making the
necessary adjustments in the models presented in this work.

7 CONCLUSION
Therefore, it is possible to conclude that the use of domain ran-
domization, to generate synthetic datasets of the voter terminal,
using a 3D model of the object, aids in estimating the 6-Dof pose
of the terminal when inserted in a controlled way in the scenario.
This research opens possible adjustments both in the modeling of
the 3D object to generate the synthetic dataset, as well as in the
generation of a more distinct real dataset, to improve the impact of
the technique. With the results already obtained, it was possible to
have an improvement concerning the usage of just real images.

In future work, it is suggested that other annotation techniques
can be performed for the real dataset, to validate each pose anno-
tated in this work. More recent techniques regarding pose estima-
tion can also be verified from the available dataset. Based on the
quality of the results presented, another work can test the use of the
proposed method of pose estimation with domain randomization
in the automation process of auditing the voter terminal using the
robotic arm.

ACKNOWLEDGMENTS
This work was supported by the research and innovation cooper-
ation project between Softex (funded by the Ministry of Science,
Technology, and Innovation through Law 8.248/91 in the scope of
the National Priority Program) and CIn-UFPE.

REFERENCES
[1] Blender Foundation (2002). 2022. About Blender.

https://www.blender.org/about/.
[2] Autodesk. 2022. Inventor: software avançado de projeto mecânico para suas ideias

mais ambiciosas. https://www.autodesk.com.br/products/inventor/overview.
[3] João Borrego, Atabak Dehban, Rui Figueiredo, Plinio Moreno, Alexandre

Bernardino, and José Santos-Victor. 2018. Applying Domain Randomization
to Synthetic Data for Object Category Detection. arXiv:1807.09834 [cs.CV]

[4] Kelvin Batista Da Cunha. 2019. Detecção de objetos em 6-DoF em tempo real
utilizando técnicas de aprendizagem profunda. Master’s thesis. Universidade
Federal de Pernambuco.

[5] Kelvin B. Da Cunha, Caio Brito, Lucas Valença, Lucas Figueiredo, Francisco
Simões, and Veronica Teichrieb. 2022. The impact of domain randomization on
cross-device monocular deep 6DoF detection. Pattern Recognition Letters 159
(2022), 224–231. https://doi.org/10.1016/j.patrec.2022.04.008

[6] K. B. da Cunha, C. Brito, L. Valenca, F. Simoes, and V. Teichrieb. 2020. A Study on
the Impact of Domain Randomization for Monocular Deep 6DoF Pose Estimation.
In 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI).
IEEE Computer Society, Los Alamitos, CA, USA, 332–339. https://doi.org/10.
1109/SIBGRAPI51738.2020.00052

[7] F2Wang. 2021. Object Dataset Tools. https://github.com/F2Wang/ObjectDatasetTools.

[8] Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. 1993.
Comparing images using the Hausdorff distance. IEEE Transactions on pattern
analysis and machine intelligence 15, 9 (1993), 850–863.

[9] A. Kendall, M. Grimes, and R. Cipolla. 2015. PoseNet: A Convolutional Network
for Real-Time 6-DOF Camera Relocalization. In 2015 IEEE International Conference
on Computer Vision (ICCV). IEEE Computer Society, Los Alamitos, CA, USA, 2938–
2946. https://doi.org/10.1109/ICCV.2015.336

[10] K. Ramnath, S. N. Sinha, R. Szeliski, and E. Hsiao. 2014. Car make and model
recognition using 3D curve alignment. In 2014 IEEE Winter Conference on Appli-
cations of Computer Vision (WACV). IEEE Computer Society, Los Alamitos, CA,
USA, 285–292. https://doi.org/10.1109/WACV.2014.6836087

[11] Joseph Redmon and Ali Farhadi. 2017. YOLO9000: Better, Faster, Stronger. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6517–6525.
https://doi.org/10.1109/CVPR.2017.690

[12] Artem Rozantsev, Vincent Lepetit, and Pascal Fua. 2015. On rendering synthetic
images for training an object detector. Computer Vision and Image Understanding
137 (2015), 24–37.

[13] Mallick Satya. 2016. Head Pose Estimation using OpenCV and Dlib. https:
//learnopencv.com/head-pose-estimation-using-opencv-and-dlib/

[14] Yongzhi Su, Jason Rambach, Alain Pagani, and Didier Stricker. 2021. Synpo-
net—Accurate and fast CNN-based 6DoF object pose estimation using synthetic
training. Sensors 21, 1 (2021), 300.

[15] Bugra Tekin, Sudipta N. Sinha, and Pascal Fua. 2018. Real-Time Seamless Single
Shot 6D Object Pose Prediction. arXiv:1711.08848 [cs.CV]

[16] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. 2017. Domain randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE Computer Society, Los Alamitos, CA,
USA, 23–30. https://doi.org/10.1109/IROS.2017.8202133

[17] J. Tremblay, A. Prakash, D. Acuna, M. Brophy, V. Jampani, C. Anil, T. To, E.
Cameracci, S. Boochoon, and S. Birchfield. 2018. Training Deep Networks with
Synthetic Data: Bridging the Reality Gap by Domain Randomization. In 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). IEEE Computer Society, Los Alamitos, CA, USA, 1082–10828. https:
//doi.org/10.1109/CVPRW.2018.00143

[18] TSE. 2020. Veja como é feita a auditoria de funcionamento das urnas eletrôni-
cas. https://www.tse.jus.br/comunicacao/noticias/2020/Dezembro/veja-como-
funciona-a-auditoria-de-funcionamento-das-urnas-eletronicas. (Accessed on
10/10/2022).

[19] TSE. 2022. Plenário do TSE triplica número de urnas eletrônicas auditadas no dia
da eleição. https://www.tse.jus.br/comunicacao/noticias/2022/Marco/plenario-do-
tse-triplica-base-amostral-de-urnas-eletronicas-auditadas-no-dia-da-eleicao. (Ac-
cessed on 2023/01/16).

[20] A. Veeraraghavan, R. Chellappa, O. Tuzel, and M. Liu. 2010. Fast directional
chamfer matching. In 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 1696–1703.
https://doi.org/10.1109/CVPR.2010.5539837

[21] Mei Wang and Weihong Deng. 2018. Deep visual domain adaptation: A survey.
Neurocomputing 312 (2018), 135–153. https://doi.org/10.1016/j.neucom.2018.05.
083

[22] Y. Xu, K. Lin, G. Zhang, X. Wang, and H. Li. 2022. RNNPose: Recurrent 6-
DoF Object Pose Refinement with Robust Correspondence Field Estimation and
Pose Optimization. In 2022 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE Computer Society, Los Alamitos, CA, USA, 14860–14870.
https://doi.org/10.1109/CVPR52688.2022.01446

[23] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. 2023.
Domain Generalization: A Survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence 45, 4 (2023), 4396–4415. https://doi.org/10.1109/TPAMI.2022.
3195549

65

https://arxiv.org/abs/1807.09834
https://doi.org/10.1016/j.patrec.2022.04.008
https://doi.org/10.1109/SIBGRAPI51738.2020.00052
https://doi.org/10.1109/SIBGRAPI51738.2020.00052
https://doi.org/10.1109/ICCV.2015.336
https://doi.org/10.1109/WACV.2014.6836087
https://doi.org/10.1109/CVPR.2017.690
https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
https://learnopencv.com/head-pose-estimation-using-opencv-and-dlib/
https://arxiv.org/abs/1711.08848
https://doi.org/10.1109/IROS.2017.8202133
https://doi.org/10.1109/CVPRW.2018.00143
https://doi.org/10.1109/CVPRW.2018.00143
https://doi.org/10.1109/CVPR.2010.5539837
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1016/j.neucom.2018.05.083
https://doi.org/10.1109/CVPR52688.2022.01446
https://doi.org/10.1109/TPAMI.2022.3195549
https://doi.org/10.1109/TPAMI.2022.3195549

	Abstract
	1 Introduction
	2 Audit of the Brazilian Electoral System
	3 Background
	3.1 Object detection and tracking in six degrees of freedom (6-DoF)

	4 Related works
	5 Methodology
	5.1 Synthetic dataset
	5.2 Real Dataset
	5.3 Test Dataset
	5.4 Pose Estimation and Domain Randomization

	6 Results
	6.1 Discussion

	7 Conclusion
	Acknowledgments
	References

