
On Rendering Synthetic Images for Training an Object

Detector

Artem Rozantseva,∗, Vincent Lepetita,b, Pascal Fuaa

aÉcole Polytechnique Fédérale de Lausanne, Computer Vision Laboratory, Lausanne, Switzerland
b Graz University of Technology, Institute for Computer Graphics and Vision, Graz, Austria

Abstract

We propose a novel approach to synthesizing images that are effective for training

object detectors. Starting from a small set of real images, our algorithm estimates the

rendering parameters required to synthesize similar images given a coarse 3D model

of the target object. These parameters can then be reused to generate an unlimited

number of training images of the object of interest in arbitrary 3D poses, which can

then be used to increase classification performances.

A key insight of our approach is that the synthetically generated images should be

similar to real images, not in terms of image quality, but rather in terms of features used

during the detector training. We show in the context of drone, plane, and car detection

that using such synthetically generated images yields significantly better performances

than simply perturbing real images or even synthesizing images in such way that they

look very realistic, as is often done when only limited amounts of training data are

available.

Keywords: synthetic data, synthetic image rendering, object detection

∗Corresponding author

Email addresses: artem.rozantsev@epfl.ch (Artem Rozantsev),

lepetit@icg.tugraz.at (Vincent Lepetit), pascal.fua@epfl.ch (Pascal Fua)

URL: http://cvlab.epfl.ch/˜rozantse, Phone: +41(0)78 9472721 (Artem

Rozantsev), http://www.icg.tugraz.at/Members/lepetit (Vincent Lepetit),

http://cvlab.epfl.ch/˜fua (Pascal Fua)

Preprint submitted to Computer Vision and Image Understanding January 12, 2015

(a) (b) (c)

Figure 1: Synthetic data generation pipeline. (a) Input to the system includes a simple model of the object

of interest, an image of this object and a background image (it should be the same background as the image

of the object has). (b) Overlaying the model on the background yields a synthetic image. This image is then

processed to maximize its similarity to a real image from the perspective of the detector. (c) The resulting

synthetic image can be used for training the detector.

1. Introduction

It is now widely accepted that when enough training data is available, statistical

approaches can address image classification problems [1] very effectively. In the com-

mercial world, this is a key ingredient of high performing face detection software de-

ployed by companies such as Apple and Google. However, there are real-world scenar-5

ios in which the required training data is hard to obtain in sufficiently large quantities.

For example, our work is motivated by the emerging need for Unmanned Aerial Ve-

hicles (UAVs), or drones, to see and avoid each other as they become increasingly

numerous and autonomous in the sky. In this application, training videos are rare and

do not cover the full range of possible shapes, poses, and lighting conditions under10

which they can be seen.

Our goal therefore is to supplement a small number of available real training sam-

ples with an arbitrary large dataset of synthetic ones to improve the detection accuracy

of a final classifier. Using synthetic data has been spectacularly successful for 3D body

pose estimation with a depth camera [2]. However, depth data do not vary with light-15

ing, motion blur, and other artifacts that affect images from a regular camera, and are

2

therefore comparatively simpler to synthesize.

A training set can also be augmented by applying small deformations and adding

noise to the images it contains [3, 4]. This was done for character [5, 6], face [7], and

image patch recognition [8]. Such augmentations are typically necessary for the now20

popular Convolutional Neural Networks [14], which require large amounts of training

data.

However, this approach assumes that the original training set is already diverse

enough, as the range of synthetic images that can be produced is limited. Moreover

simple perturbations are often not enough and special car should be taken. More so-25

phisticated approaches have also been proposed for human detection and pose estima-

tion purposes in [9, 10], but [9] does not model image-acquisition artifacts while [10]

involves considerable amounts of manual interaction, which is less desirable. It was

recently shown [11] that it is possible to use a 3D car model to first extract appear-

ance information from real images of cars, and use this information to synthesize novel30

views. Using these images for training purposes improves performance but this ap-

proach does not account for other artifacts such as motion blur and is only applicable

to objects with relatively simple geometry.

Furthermore, to the best of our knowledge none of these approaches offers a princi-

pled way to choose the image synthesis parameters to match the behavior of real-world35

cameras in the presence of noise. The relevant parameters are typically tuned by hand,

which quickly becomes unmanageable when the rendering pipeline is complex. To

overcome this limitation, we therefore introduce a fully automated and generic method

to estimate these parameters from a small set of available real images to maximize the

performance of a detector trained using the resulting synthetic images.40

To this end, we start from a small set of real seed images containing a target ob-

ject and corresponding background images without it, such as the ones depicted by

Fig. 1(a). Given a very coarse 3D model of the object of interest, such as that of the

drone of Fig. 1(a), we estimate the 3D pose of the object, overlaid onto the background

image, and then post-process the resulting composite image so that it is as similar as45

possible to the real one. This is achieved by automated selection of the post-processing

parameters to maximize a similarity between the two images. Once these parameters

3

are found, we can then change the position and the orientation of the object in the

images to generate arbitrary large synthetic datasets with realistic imaging artifacts.

A key ingredient of our approach is the similarity function used to measure the dif-50

ference between real and composite images. An obvious candidate would be the pixel-

wise Euclidean distance. However, our goal is not to generate eye-pleasant images,

but rather training data that is effective for our intended purpose. We will therefore

show that the best similarity depends on the target detection method. We demonstrate

this for three widely used methods that are representative of the state-of-the-art: The55

Deformable Part Model (DPM) method [12], an AdaBoost-based detector [13], and a

detector based on Convolutional Neural Networks (CNN) [14]. Together, these meth-

ods cover the state-of-the-art in both object detection and image features.

In short, our contribution is a novel and fully automated approach to generating

synthetic training image databases that increases detection performance and outper-60

forms the state-of-the-art techniques discussed above, irrespective of the specific de-

tector used. We will demonstrate this in the context of drone, plane, and car detection.

In the remainder of this paper, we first discuss the effects we want to model in our

synthetic images. We then describe and compare the different similarity functions to

quantify the similarity between synthetic and real images. Furthermore, we demon-65

strate the power of our approach on aircrafts of very different shapes and flying in

various environments and lighting conditions. Finally, we compare our approach to

recent work [11] on the Pascal VOC dataset.

2. Related Work

Given the prevalence of Machine Learning based algorithms, capturing and anno-70

tating training images has become a major issue, and sometimes a severe bottleneck

when such images are hard to acquire. In such cases, using Computer Graphics tech-

niques to generate them is a very attractive alternative.

For example, Optical Character Recognition systems have long been trained using

samples created by applying various deformations and adding image noise to actual75

samples [5, 6]. Similarly, synthetically generated image patches have been success-

4

fully used in [15, 16]. Note, however, that neither characters nor patches exhibit the

full complexity of natural images and are therefore easier to synthesize. In [2], this

approach was used on complete depth images generated from 3D models of people to

train classifiers to recover human 3D pose from the output of a Kinect camera. This80

has been remarkably successful, in large part because it provides a way to create ar-

bitrarily large training dataset. However, depth images also lack many of the imaging

artefacts present in ordinary images, such as motion blur or lighting effects, which

make it difficult to use such an approach for video imagery.

This was attempted in [9] by generating images of pedestrians in various poses and85

environments to train a pedestrian detector. The results are encouraging but the method

does not take complex imaging artefacts into account. More recently, an approach to

creating more realistic synthetic images by extracting people’s silhouettes from real

images, and superimposing them over various backgrounds was proposed [10]. How-

ever, it is very specific to pedestrian detection and requires a considerable amount of90

manual annotation.

Like ours, the approach of [11] relies on both real training images and a 3D model.

After registering the 3D model to the images, the material and lighting properties of

the different object components are estimated and used to synthesise new views of the

3D model. However, it does not take into account other artifacts such as motion blur95

and requires precise registration.

Of course, generic image synthesis techniques have also been used in computer

vision for many other purposes, such as optimizing camera tracking algorithms [17],

evaluation of algorithms [18, 19, 20, 21, 22, 23], gesture recognition and pose estima-

tion [24, 25], or rendering virtual objects that merge well with real images [26]. Some100

of these approaches simply project the 3D model of the object of interest on an arbi-

trary background image. Others add post-processing on similarly generated synthetic

images in order to make them look realistic. However, to the best of our knowledge

none of them estimate neither how realistic the resulting images are, nor how suitable

they are for the application itself.105

In this work, we will use some of the same approaches to synthesizing realistic

images. This being said, visual realism is not our end goal, but rather the classification

5

(a) Boundaries blurring (b) Motion blurring

(c) Random noise (d) Diffuse coefficient of material variation

Figure 2: The four post-processing effects we use for increasing the similarity between the real and synthetic

images.

performance improvement. As such our algorithm, unlike the others, automatically

optimizes the rendering parameters solely for this purpose.

3. Generating Synthetic Images110

As illustrated by Fig. 1, while our pipeline is simple, it depends on many parameters

that would be hard to choose by hand. We use simple CAD models, such as that

of Fig. 1(a), which roughly captures the target object geometry. We assume that we

are given a small set of real images featuring the target object and a corresponding

set of background images without it. As we will explain, these background images115

can usually be extracted from the training video sequence itself. In cases where the

background is not visible at any time, it is still possible to estimate it by cutting out the

object from the original images and using a texture filling algorithm. This approach

will be more thoroughly discussed in Section 5.3.

For each real image, we then compute 5 pose parameters, that include 3 orienta-120

tions (αp, βp, γp) and 2 translations (tpx, t
p
y), which lets us project the 3D model at the

desired location. Note that as we use multi-scale detector, we do not need to vary the

scale of the object.

As shown in Fig. 2, we then post-process the synthetic image to maximize its sim-

ilarity to the real image. This involves:125

6

• Object boundary blurring (BB). The discrete nature of the image sensor causes

a mixture of the intensities of the background and the target object along its

boundaries. To simulate this effect we apply Gaussian blurring along the object

boundaries after the object image has been overlaid on the background image.

This is controlled by the standard deviation σs of the Gaussian kernel used for130

smoothing.

• Motion blurring (MB). This mimics the blurring effect that affects on fast mov-

ing objects if the shutter time of the camera is too long. To simulate this effect

we use anisotropic Gaussian blurring applied to the pixels of the object in the

direction of its motion. The parameters are the two standard deviations σm
u and135

σm
v of the Gaussian kernel and the angle αm of the motion.

• Random noise (RN). This emulates the shot noise added to the image by the

camera. To simulate this effect we simply add independent Gaussian noise to

the pixel intensities. Note this is limited to the image pixels that correspond to

the inserted object, as the background images are real ones and already contain140

similar noise. This is controlled by the standard deviation σn of the Gaussian

distribution used to generate the noise.

• Material properties (MP). We also vary the material properties, by changing the

weight wd of the diffuse reflection. This allows us not only to vary the color

of the object, but also to introduce some diffuse lighting effects. While we do145

not take specularities into account, this would be a very natural extension to our

approach.

We refer to these synthetic data generation parameters as capture parameters

Θ = [αp, βp, γp, tpx, t
p
y

︸ ︷︷ ︸

pose

, σs, σm
u , σm

v , αm, σn, wd

︸ ︷︷ ︸

capture

]⊤ . (1)

These parameters are challenging to tune because they are heavily correlated. This is

particularly true of object pose and direction of motion blur, as well of boundary blur-150

ring and motion blurring. Thus our goal is to estimate the Θ parameters for every seed

real image that we use for synthetic data generation. Given the background images and

7

the corresponding Θ parameters, we retain the capture parameters and randomize the

pose ones to generate arbitrary large numbers of synthetic images that will be realistic

enough to be used for training the object detector. We explain below how we recover155

these Θ parameters.

4. Optimizing the Rendering Parameters

To optimize the pose and capture parameters in Θ, we rely on a small set of real

images of the target object, together with the corresponding images of the background

without the target.160

Starting from a background image on which we render the CAD model of the tar-

get object, we optimize the rendering parameters to reproduce the corresponding real

image. This optimization is performed on each image independently, because the same

capture parameters do not necessarily apply to all of them. More formally, we consider

the set of pairs of real images {(Xi, Bi)}
N
i=0, where Xi ∈χ is the ith image of the ob-165

ject and Bi ∈χ is the background image for Xi. Let d :χ ×χ→ R
+ be a similarity

function, which we use to compare two images, and which we will define explicitly

in Sect. 4.1. Lastly, let S(Θ, Bi) ∈ χ represent the synthetically rendered image by

applying the synthetic data generation process with parameters Θ to the Background

Bi170

To find the set of parameters Θ that best corresponds to real image Xi, we look for

Θ(i) = argmin
Θ

d(Xi, S(Θ, Bi)) (2)

by Simulated Annealing [27]. This approach is widely used for solving non-continuous

optimization problems with a large number of parameters. In practice, we initialize

the pose parameters by manually providing the object center, which could be avoided

with a more sophisticated optimization algorithm. Capture parameters are initialized175

randomly. This optimization takes a few seconds on each of our 40× 40 images.

The capture parameters in Θ depend on viewing conditions, such as lighting and

weather conditions, which is why we perform the optimization in each image indepen-

dently. Fig. 3 describes their distributions across images. Note that these distributions

8

σn σn σm
u

σm
v σs σm

v

Figure 3: Each histogram depicts the joint distribution of different pairs of capture parameters. (best seen in

color)

are absolutely not Gaussian and that it would therefore be non-trivial to describe them180

analytically.

4.1. Image Similarity Measures

The resulting parameters depend critically on the similarity function d(·, ·) used to

evaluate how close the two images are to each other. The simplest is the Euclidean

distance between the intensity values of corresponding pixels185

dEucl(Xre, Xsy) =

√
H

Σ
v=1

W

Σ
u=1

(
Xre(u, v)−Xsy(u, v)

)2
, (3)

where Xre and Xsy are the real and synthetic images respectively, and W and H denote

the images dimensions.

However, since our goal is to generate synthetic images that are more effective

to train a detection method, we will see this is not the best possible choice, for our

purposes.190

More specifically, we evaluated our approach in conjunction with three commonly

used object detectors—DPM [12], an AdaBoost-based detector [13], and a CNN [14]—

and we therefore introduce three different similarity functions, each one based on the

image features used by one of these methods. We will show that our approach to

image generation works best when relying on the distance function corresponding to195

the detection method.

Since DPM relies on Histograms-of-Gradients (HoG) [28], the first similarity func-

tion we consider the distance between the HoG vectors [28] computed for the two

9

images as the similarity function

dHoG(Xre, Xsy) =

√
L

Σ
i=1

(
HoGi(Xre)− HoGi(Xsy)

)2
, (4)

where HoGi(X) is the ith coordinate of the HoG vector computed for image X .200

We also consider an AdaBoost detector, whose weak learners rely on the image

gradients proposed in [29]. We write

hR,o,τ (X) =







1, if E(X,R, o) > τ,

0, otherwise.
(5)

These weak learners are parametrized by a region R, an orientation o, and a threshold

τ . E(X,R, e) is the normalized image gradient energy over region R in X and in

orientation o. We therefore introduce the additional function:205

dHWL(Xre, Xsy) =

√
L

Σ
i=1

αi

(
hi(Xre)− hi(Xsy)

)2
, (6)

where L is the number of weak learners hi with their corresponding weights αi. We

tried two different methods to build such a set:

• dRWL(Xre, Xsy) will denote the previous similarity function when random weak

learners, each with a weight α = 1, are used;

• dLWL(Xre, Xsy) will denote the previous similarity function when a set of weak210

learners and their weights selected by AdaBoost on the seed real images is used.

The third detection method we consider is a Convolutional Neural Network (CNN)

which, unlike the previous two, does not rely on hard-coded image features but learns

them instead. We therefore first train a CNN on the real seed images only and consider

the distance215

dCNN(Xre, Xsy) =

√
N

Σ
n=2

Ln

Σ
i=1

(
CNNn

i (Xre)− CNNn
i (Xsy)

)2
, (7)

where CNNn
i (X) is the value of the ith neuron of the nth layer of the Convolutional

Neural Network; N is the number of layers in the CNN; Ln is the number of neurons

of the nth layer of CNN.

In Fig. 4, we show synthetic images with the corresponding real seed images. Each

image was obtained by finding the rendering parameters that minimize one of the five220

similarity functions introduced above.

10

Original dEucl dHoG dRWL dLWL dCNN

Figure 4: Samples of real images with corresponding synthetic ones. The Θ parameters for the synthetic

images were optimised using different image similarity functions.

5. Results

In this section, we first introduce the three datasets that we used for training and

testing of our algorithms. Then we compare our synthetic data generation approach

with several baselines, and evaluate the importance of each of our rendering effects.225

Our next step is to show the significance of the optimization of the Θ rendering param-

eters. Further on we experimentally estimate the optimal ratio between synthetic and

real samples used for training. We then show that our algorithm is able to generalize to

multiple kinds of aircrafts. Finally we compare our approach to a very recent one on

realistic data generation on the PASCAL VOC dataset.230

• UAV Dataset. This dataset contains challenging images that were acquired from

the camera of a flying UAV. In these low-resolution images one can see another

drone that flies around and appears against different backgrounds and under var-

ious lighting conditions. Even though only one drone was used to produce the

images, the dataset includes many of the challenges that outdoor environments235

11

T
ra

in
in

g
D

at
a

E
v
al

u
at

io
n

D
at

a

Figure 5: Sample real images both for training and evaluation from the UAV dataset. The evaluation images,

while created using a single UAV, are very challenging as they are low-resolution while exhibiting significant

lighting, background, and pose variations.

pose, such as large illumination and background changes. We use it to investigate

the impact of the different effects our rendering pipeline includes.

• Aircraft dataset. This dataset contains images of different planes seen against

changing backgrounds and under a variety of weather and lighting conditions.

We use it to demonstrate that our approach generalizes to a much larger class of240

objects than simply drones. As in the case of the UAV dataset, we will demon-

strate that regardless of the machine learning method used to detect the target

objects, we can improve performance by appropriately generating our synthetic

images.

12

• PASCAL VOC 2007. We use this well-known Computer Vision benchmark to245

compare our approach to a very recent work on synthetic view generation [11].

As in [11], we restrict ourselves here to the car class, which nevertheless further

demonstrates the versatility of our approach.

We will present our results in terms of both recall r vs precision p curves and aver-

age precision AveP, defined as
1∫

0

p(r)dr. Some additional results and video sequences250

can be found on the webpage of the project1.

5.1. Gauging the Various Components of the Approach using the UAV Dataset

We created a dataset of 2,000 images of UAVs in various environments and seen

under different lighting conditions. Fig. 5 depicts some of the images. The images

were captured by one UAV filming another one while they were both flying.255

Fig. 6 depicts detections by an AdaBoost classifier trained using either real images

only or both real and synthetic images. We will quantify the observed performance

improvement in the remainder of this section. In Fig. 7, we show additional examples

of detections by the detector trained on both real and synthetic data as well as some

failure cases to illustrate how challenging this dataset is.260

We first describe the acquisition process and then use these UAV images to test

individual components of our pipeline and to evaluate overall performance.

5.1.1. Experimental Setup

To obtain the background images required to render the composite ones, we first

aligned consecutive frames by computing the homographies between the frames, and265

kept the median intensity at each location of the aligned images.

The training and testing videos were acquired in different environments and feature

different backgrounds. The CAD model of the UAV used for rendering only coarsely

outlines the main geometrical structure of the real object, as illustrated by Fig. 1(a).

Negative training and testing samples were obtained by randomly sampling the back-270

grounds of the training images. For detection, we use a sliding window approach that

1http://cvlabwww.epfl.ch/˜rozantse/synthetic_data.html

13

http://cvlabwww.epfl.ch/~rozantse/synthetic_data.html

R
ea

l
D

at
a

R
ea

l+
S

y
n

th
D

at
a

R
ea

l
D

at
a

R
ea

l+
S

y
n

th
D

at
a

Figure 6: Qualitative comparison of the performance of the detectors trained just on real data versus both

real and synthetic data.

applies the detector at every spatial location and at different scales of the whole image.

Non-maximum suppression is then applied to the response image scale-space.

The detection methods in the experiments are trained with a combination of real

and synthetic data and tested on the real data only.275

5.1.2. Comparing against simply Perturbing the Real Images

A broadly used approach to augmenting a training set is to perturb the available

images using simple image transformations [5, 6]. Table 1 compares the performances

of all three selected detectors when being trained on images generated either in this

way or using our approach. The perturbations involve combining rotation, translation,280

mirroring, blurring and adding noise to the original images.

14

Detections

Missed and False Detections

Figure 7: Top rows: More sample detections by the AdaBoost detector trained using both real and synthetic

data. Bottom row: Missed or false detections to highlight the challenges that the dataset provides for the

detector. (best seen in color)

Using real By perturbing
Our method

images only the real images

Detection method: Average precision:

DPM 0.84 0.87 0.93

AdaBoost 0.80 0.83 0.92

CNN 0.85 0.86 0.89

Table 1: Comparing average precisions for each detection method when either perturbing real training

images or using our approach with the optimal number of synthetic images and the appropriate distance

measure . Our approach significantly outperforms this traditional method.

Our approach significantly outperforms this simple technique. This can be ex-

plained by the fact that we generate realistic combinations of 3D poses and background

that are not present in the seed images.

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

All parameters
All, but Boundaries Blurring
All, but Motion Blurring
All, but Material
All, but Noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

All parameters
All, but Boundaries Blurring
All, but Motion Blurring
All, but Material
All, but Noise

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

All parameters
All, but Boundaries Blurring
All, but Motion Blurring
All, but Material
All, but Noise

DPM and dHoG(., .) AdaBoost and dLWL(., .) CNN and dCNN(., .)

Synthetic data generation effects:

All no BB no MB no RN no MP

Detection method: Average precision:

DPM 0.93 0.83 0.84 0.83 0.80

AdaBoost 0.92 0.85 0.71 0.75 0.91

CNN 0.89 0.88 0.89 0.88 0.85

Figure 8: Evaluating the importance of each capture parameter. Each one clearly has a positive influence of

the quality of the synthetic data. However, their respective impacts depends on the specific detection method.

(best seen in color)

5.1.3. Relative Importance of the Various Rendering Effects285

To demonstrate that correctly setting each one of the capture parameters intro-

duced in Section 3 truly matters, we performed the following set of experiments.

For each effect—object boundary blurring, Motion blurring, Random noise, Material

properties—we set the corresponding value in the capture parameters Θ of Eq. 1 to 0

to suppress its influence and optimized the other parameters using the appropriate sim-290

ilarity measure for each detection method. We then used the resulting Θ’s to generate

the synthetic images, trained the corresponding detector on these images and evaluated

is on the test images. The results are shown in Fig. 8. Correctly modeling each effect

clearly has a positive influence on final performance.

16

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

DPM (DPM)
DPM (Random par.)
DPM (Real Data)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

AdaBoost (OWL)
AdaBoost (Random par.)
AdaBoost (Real Data)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

CNN (CNN)
CNN (Random par.)
CNN (Real Data)

DPM AdaBoost CNN

Using real Random Optimized

images only parameters parameters

Classification method: Average precision:

DPM 0.84 0.82 0.93

AdaBoost 0.80 0.82 0.92

CNN 0.85 0.87 0.89

Figure 9: Comparison of the performances of different detectors trained on real and synthetic data generated

using corresponding similarity measures with those where the capture parameters are randomly selected.

The optimized parameters always yield better performance. (best seen in color)

5.1.4. Importance of Optimizing over the Rendering Parameters295

To show the importance of optimizing over the capture parameters Θ, we compare

in Fig. 9 the final performance obtained using optimized parameters with the final per-

formance obtained with random parameters drawn from a uniform distribution. The

minimum and maximum values of the uniform distribution were taken as the minimum

and maximum values of the optimized parameters. Our optimization-based approach300

clearly brings a significant improvement.

5.1.5. Influence of the Number of Synthetic and Real Images

To evaluate how much we can improve the performances using synthetic images

generated with our approach, we trained each of the detection methods we consider

with different numbers of synthetic samples in addition to the real training samples.305

17

Similarity measure:

Using real
dEucl(., .) dHoG(., .) dRWL(., .) dLWL(., .) dCNN(., .)

images only

Detection method: Average precision:

DPM 0.84 0.78 0.93 0.70 0.72 0.67

AdaBoost 0.80 0.72 0.85 0.89 0.92 0.75

CNN 0.85 0.84 0.84 0.84 0.86 0.89

Table 2: Comparison of average precisions for each detection method, when the optimal number of synthetic

images is used. Each detection method performs best with the corresponding similarity function.

For each detector, the synthetic samples were generated using the parameters obtained

using the appropriate similarity functions.

Fig. 10 compares the performances of these detectors when varying the number of

synthetic samples. It can be seen that using the synthetic images significantly improves

performance over using the real images alone. However, this is only true up to a point.310

When there are too many synthetic images, the performance eventually decreases be-

cause the influence of the real images gets drowned out. In practice, this means that for

best performance, it makes sense to use a validation set to ascertain the optimal ratio

of synthetic to real images.

From these experiments we can conclude that the best ratio of synthetic and real ex-315

amples that should be used for training depends on the detection algorithm. AdaBoost

achieves its highest accuracy with 100 synthetic images for each real one, DPM with

50 synthetic images for each real one, and CNN with 15−20 synthetic images for each

real one.

We also evaluated the influence of the number of seed real images on the final320

performances, by decreasing the number of real images used to optimize the rendering

parameters. Fig. 11 shows the results for the AdaBoost detector. Using as few as 12

real samples is enough to generate synthetic samples that allows us to outperform a

detector trained with about 8 times as many real images. Unsurprisingly, increasing

the number of seed real images results in an improvement of the final performances.325

18

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real Data
1000 synthetic samples
2500 synthetic samples
5000 synthetic samples
10000 synthetic samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real Data
500 synthetic samples
2000 synthetic samples
5000 synthetic samples

DPM and dHoG(., .) AdaBoost and dRWL(., .)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real Data
600 synthetic samples
1300 synthetic samples
5000 synthetic samples
10000 synthetic samples
20000 synthetic samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real Data
500 synthetic samples
1500 synthetic samples
2500 synthetic samples
5000 synthetic samples

AdaBoost and dLWL(., .) CNN and dCNN(., .)

Figure 10: We varied the number of synthetic images used for training, for three detection methods, using

their corresponding similarity measures. Using both real and synthetic data for training phase increases

performances compared to real data used alone. However using too much synthetic data may also hurt. (best

seen in color)

5.1.6. Optimal Performance

In this section, for each detection method, we use the optimal numbers of synthetic

samples as discussed in the previous section. For comparison purposes, we also es-

timated the optimal numbers of synthetic samples when using the Euclidean distance

dEucl(., .) as similarity measure.330

Table 2 confirms that each detection method performs best when trained using syn-

thetic images, generated using appropriate similarity measure, as discussed in Sec-

19

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recal

Real Data (100 real)
12 real + 5000 synthetic
50 real + 5000 synthetic
100 real + 5000 synthetic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recal

Real Data (100 real)
12 real + 2500 synthetic
50 real + 2500 synthetic
100 real + 2500 synthetic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recal

Real Data (100 real)
12 real + 1500 synthetic
50 real + 1500 synthetic
100 real + 1500 synthetic

DPM and dHoG(., .) AdaBoost and dLWL(., .) CNN and dCNN(., .)

Figure 11: Performance of the DPM, AdaBoost, and CNN detectors for different numbers of seed real im-

ages. Using as few as 12 real samples is enough to generate synthetic samples that allow us to outperform

a detector trained with 100 images. For each detector, the synthetic images were generated using the corre-

sponding similarity measure.

Figure 12: The three CAD models we used for the Aircraft dataset. They are freely available on the internet.

tion 4.1. In particular, using the Euclidean distance is not only ineffective, but actually

yields worse results than not using synthetic images at all. Interestingly, the best perfor-

mance is obtained with DPM trained with both real and synthetic images, even though335

CNN was better than DPM when no synthetic images were used.

5.2. Detecting Multiple Kinds of Aircrafts

For the Aircraft dataset, we generated synthetic data using CAD models depicted

by Fig. 12 of three types of fixed-wing aircrafts and tested them on different real video

sequences. We use 100 real images of these three aircraft types along with their cor-340

responding background images. These images were collected by manually annotating

different video sequences where the aircrafts fly in different weather conditions and

appear at different angles. Sample images from this dataset are shown on Fig. 13.

Here, we used an AdaBoost detector trained using real and synthetic images gen-

erated based on the dLWL(., .) similarity function of Section 4.1. We generated 10,000345

synthetic samples to supplement the real images and used them as a training dataset.

20

Figure 13: Sample seed real images from the Aircraft dataset.

Figure 14: Generated samples of aircrafts.

Fig. 14 depicts sample synthetic images.

The test images come from 8 video sequences, one of which contains 5,000 frames,

while the others are made of 500 frames. These sequences show different types of air-

crafts flying in different environments and weather conditions. In Table 3 and Fig. 15,350

we compare results using real images only against an optimal combination of real and

synthetic images.

Using the detector trained on both real and synthetic images we achieve about 90%

detection accuracy, as opposed to approximately 65% when using real images only.

This large improvement can be explained by the fact that we have only 100 real images355

containing three different models, while we generated 100 images for each real seed

image, which results in total in 10,000 positive examples. Table 3 illustrate the best ac-

21

Similarity measure:

Using real

dEucl(., .) dHoG(., .) dRWL(., .) dLWL(., .) dCNN(., .)
images only

Detection method: Average precision:

DPM 0.79 0.83 0.88 0.85 0.86 0.81

AdaBoost 0.65 0.75 0.84 0.87 0.92 0.73

CNN 0.72 0.75 0.85 0.70 0.83 0.88

Table 3: Comparing average precisions for each detection method when the optimal number of synthetic

images is used for the Aircraft dataset. Each detection method performs best when using the corresponding

similarity function.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real data
Real and Synth samples

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real data
Real and Synth samples(BWL)
Real and Synth samples(RWL)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

Real data
Real and Synth samples

DPM and dHoG(., .) AdaBoost and d
L,R
WL (., .) CNN and dCNN(., .)

Figure 15: Comparing the accuracy of the detectors trained with real images only (blue) against those trained

using both synthetic and real images (red or green). AdaBoost in particular does not perform very well with

only the real images because 100 samples are not enough to train the algorithm to detect 3 different kinds

of aircrafts. Nevertheless, introducing synthetic images lets us enrich the training set to the point where

performance improves substantially in all cases. In the AdaBoost case, the red curve is obtained by using the

dLWL(., .) similarity measure and the green one the dRWL(., .) similarity measure.

curacy one can get varying the number of synthetic samples being added to the training

set. Sample detections are shown in Fig. 16, which also depicts some failure cases.

5.3. Comparing against another recent Image-Based Synthesis Approach360

We compare here our approach with the one of [11], which was applied to car

detection on the PASCAL VOC car dataset. Like ours, it uses a CAD model of the

target object and seed real images. Its main contributions are the estimation of the

22

Detections

Missed and False Detections

Figure 16: Examples of detections and some errors made by the detector, trained on both real and synthetic

samples, and evaluated on the Aircraft dataset.

material properties of every car component in a real image and the exploitation of this

information to generate new synthetic views, which are then used to supplement real365

ones to train a DPM detector. This requires registration of the model so that it precisely

fits the car in the image and the image texture can then back-projected onto the car

model, so that material properties can be assigned to each visible part of the model.

To generate a new view, the model is rotated in 3D and re-projected in the scene,

which includes the ground plane and the background plane. This ends up making some370

previously invisible parts of the car visible. Material properties for these newly visible

parts are estimated using a weighted sum of the properties of the parts whose material

properties have already been estimated.

Since, our algorithm requires background images in addition to the model and seed

real images, we derived them from the seed images by cutting out the car and filling375

the empty space using content aware texture filling [30]. Sample images are shown in

Fig. 17.

The images of the Pascal VOC dataset being in color, for a fair comparison against [11]

23

(a) (b) (c)

Figure 17: (a) Sample synthetic images of cars generated by our approach. (b, c) Patches extracted from

these images emphasizing the importance of the boundary and motion blurring effects.

that exploits this fact, we extended our approach to color images by simply optimizing

on the Θ parameters on the three RGB channels independently, which yields three sets380

of parameters for every image. These parameters are then used to generate separate

synthetic images for every channel, and finally combined in one RGB image. We vary

the pose of the car model, but also the direction of the light source, which cannot be

done with [11]. The results of this combination are presented in Fig. 18. The car in

Fig. 18(b) does not look very realistic, because the same properties are applied to all385

the components of the car. A more sophisticated model would solve this issue, however

we already obtain satisfying results using this simplistic rendering, which confirms that

producing visually pleasing synthetic images is not a primary requirement. Some de-

tections made by the 5 component DPM framework, trained on both real and synthetic

data are presented in the Fig. 19.390

Table 4 shows that we outperform [11] even though our approach was originally

designed to generate small image patches centered on the target object. Furthermore,

as shown in the previous sections, it is applicable to low-resolution images with very

limited texture, for which the the method of [11] is not well adapted. Furthermore, if

we don’t use color, the performance drops by only 1-2%, which is not very large.395

24

Test set Training set Avg. Precision

Number of components: N = 3 N = 4 N = 5

V
O

C
2

0
0

7

Side 16.2 18.4 16.7

Side+Synth [11] 30.2 31.4 33.2

Side+Synth (Our method) 35.1 37.9 38.0

Full 51.7 53.4 50.7

Full+Synth [11] 50.2 53.1 50.9

Full+Synth (Our method) 52.1 52.9 55.3

Table 4: Comparing the performances of the DPM detector on the PASCAL VOC car dataset when trained

with the method of [11] and our method as a function of N , the number of DPM components. The perfor-

mance of the detectors trained using only the real images is also given for reference.

(a) (b) (c)

Figure 18: Sample color synthetic images of cars, generated by our system. (b) does not look very realistic,

because the same properties are applied to all the components of the car. A more sophisticated model could

be used to address this issue. However realism does not seem to be critical for our purposes since our

simplistic model is sufficient to outperform [11].

6. Conclusion

We have shown that by properly optimizing the parameters of a very simple ren-

dering pipeline, we can generate synthetic images that significantly improve the per-

formance of an object detector when used for training. We believe our parameter opti-

25

Correct Detections

Mis-detections

Figure 19: Sample detections made by the 5 component DPM, trained on the full real VOC dataset, supple-

mented by synthetic data, generated by our method. Last row shows mis-detections. (best seen in color)

mization scheme is a powerful tool to manage the large numbers of parameters a more400

complex rendering pipeline could have. It therefore opens new doors towards the use of

sophisticated Computer Graphics and post-processing effects to generate images even

closer to real ones, and to relax the cumbersome need for large numbers of real images

to train Computer Vision methods.

References405

[1] Q. Le, M. Ranzato, R. Monga, M. Devin, K. Chen, G. Corrado, J. Dean, A. Ng,

Building High-Level Features Using Large Scale Unsupervised Learning, in: In-

ternational Conference on Machine Learning, 2012.

[2] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio,

26

R. Moore, P. Kohli, A. Criminisi, A. Kipman, A. Blake, Efficient Human Pose410

Estimation from Single Depth Images, IEEE Transactions on Pattern Analysis

and Machine Intelligence 99.

[3] C. Burges, B. Schölkopf, Improving the Accuracy and Speed of Support Vector

Machines, in: Advances in Neural Information Processing Systems, 1997, pp.

375–381.415

[4] D. Decoste, B. Schölkopf, Training Invariant Support Vector Machines, Machine

Learning 46 (2002) 161–190.

[5] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-Based Learning Applied to

Document Recognition, in: Intelligent Signal Processing, 2001, pp. 306–351.

[6] T. Varga, H. Bunke, Generation of Synthetic Training Data for an Hmm-Based420

Handwriting Recognition System, in: 7th Int. Conference on Document Analysis

and Recognition, 2003, pp. 618–622.

[7] F. Fleuret, D. Geman, Coarse-To-Fine Visual Selection, International Journal of

Computer Vision 41 (1) (2001) 85–107.

[8] V. Lepetit, P. Lagger, P. Fua, Randomized Trees for Real-Time Keypoint Recog-425

nition, in: Conference on Computer Vision and Pattern Recognition, 2005.

[9] J. Marin, D. Vázquez, D. Geronimo, A. M. Lopez, Learning Appearance in Vir-

tual Scenarios for Pedestrian Detection, in: Conference on Computer Vision and

Pattern Recognition, 2010, pp. 137–144.

[10] L. Pishchulin, A. Jain, A. Mykhaylo, T. Thormaehlen, B. Schiele, Articulated430

People Detection and Pose Estimation: Reshaping the Future, in: Conference on

Computer Vision and Pattern Recognition, 2012.

[11] K. Rematas, T. Ritschel, M. Fritz, T. Tuytelaars, Image-Based Synthesis and Re-

Synthesis of Viewpoints Guided by 3D Models, in: Conference on Computer

Vision and Pattern Recognition, 2014.435

27

[12] P. Felzenszwalb, D. Mcallester, D. Ramanan, A Discriminatively Trained, Mul-

tiscale, Deformable Part Model, in: Conference on Computer Vision and Pattern

Recognition, 2008, pp. 1–8.

[13] Y. Freund, R. Schapire, A Decision-Theoretic Generalization of On-Line Learn-

ing and an Application to Boosting, in: European Conference on Computational440

Learning Theory, 1995, pp. 23–37.

[14] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, T. Poggio, Robust Object Recog-

nition with Cortex-Like Mechanisms, IEEE Transactions on Pattern Analysis and

Machine Intelligence.

[15] V. Lepetit, P. Fua, Keypoint Recognition Using Randomized Trees, IEEE Trans-445

actions on Pattern Analysis and Machine Intelligence 28 (9) (2006) 1465–1479.

[16] D. Cireşan, A. Giusti, L. Gambardella, J. Schmidhuber, Deep Neural Networks

Segment Neuronal Membranes in Electron Microscopy Images, in: Advances in

Neural Information Processing Systems, 2012.

[17] A. Handa, R. Newcombe, A. Angeli, A. Davison, Real-Time Camera Tracking:450

When is High Frame-Rate Best?, in: European Conference on Computer Vision,

2012, pp. 222–235.

[18] B. Horn, B. Schunck, Determining Optical Flow, Artificial Intelligence 17 (1981)

185–204.

[19] J. L. Barron, D. J. Fleet, S. S. Beauchemin, Performance of Optical Flow Tech-455

niques, International Journal of Computer Vision 12 (1994) 43–77.

[20] M. Stark, M. Goesele, B. Schiele, Back to the Future: Learning Shape Models

from 3D CAD Data, in: British Machine Vision Conference, 2010, pp. 1061–

10611.

[21] J. Liebelt, C. Schmid, Multi-View Object Class Detection with a 3D Geometric460

Model, in: Conference on Computer Vision and Pattern Recognition, 2010.

28

[22] S. Baker, D. Scharstein, J. Lewis, S. Roth, M. Black, R. Szeliski, A Database

and Evaluation Methodology for Optical Flow, International Journal of Computer

Vision 92 (2011) 1–31.

[23] B. Kaneva, A. Torralba, W. Freeman, Evaluation of Image Features Using a Pho-465

torealistic Virtual World, in: International Conference on Computer Vision, 2011.

[24] V. Athitsos, S. Sclaroff, Estimating 3D Hand Pose from a Cluttered Image, in:

Conference on Computer Vision and Pattern Recognition, 2003, pp. 432–439.

[25] L. Taycher, G. Shakhnarovich, D. Demirdjian, T. Darrell, Conditional Random

People: Tracking Humans with CRFs and Grid Filters, in: Conference on Com-470

puter Vision and Pattern Recognition, 2006.

[26] G. Klein, D. W. Murray, Simulating Low-Cost Cameras for Augmented Reality

Compositing, IEEE Transactions on Visualization and Computer Graphics 16 (3)

(2010) 369–380.

[27] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by Simulated Annealing, Sci-475

ence 220 (4598) (1983) 671–680.

[28] N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, in:

Conference on Computer Vision and Pattern Recognition, 2005.

[29] K. Levi, Y. Weiss, Learning Object Detection from a Small Number of Examples:

the Importance of Good Features, in: Conference on Computer Vision and Pattern480

Recognition, 2004.

[30] T. Ruzic, A. Pizurica, Texture and Color Descriptors as a Tool for Context-Aware

Patch-Based Image Inpainting, in: SPIE Electronic Imaging, 2012.

29

Artem Rozantsev joined EPFL in 2012 as Ph.D. candidate at

CVLab, under the supervision of Prof. Pascal Fua and Prof. Vin-

cent Lepetit. He received his Specialist degree in Mathematics

and Computer Science from Lomonosov Moscow State Univer-

sity. His main research interests include object detection, synthetic

data generation and machine learning.

Vincent Lepetit is a Professor at the Institute for Computer Graph-

ics and Vision, TU Graz and a Visiting Professor at the Computer

Vision Laboratory, EPFL. He received the engineering and master

degrees in Computer Science from the ESIAL in 1996. He re-

ceived the PhD degree in Computer Vision in 2001 from the Uni-

versity of Nancy, France, after working in the ISA INRIA team.

He then joined the Virtual Reality Lab at EPFL as a post-doctoral

fellow and became a founding member of the Computer Vision Laboratory. His re-

search interests include vision-based Augmented Reality, 3D camera tracking, Machine

Learning, object recognition, and 3D reconstruction.

Pascal Fua received an engineering degree from Ecole Polytech-

nique, Paris, in 1984 and the Ph.D. degree in Computer Science

from the University of Orsay in 1989. He joined EPFL in 1996

where he is now a Professor in the School of Computer and Com-

munication Science. Before that, he worked at SRI International

and at INRIA Sophia-Antipolis as a Computer Scientist. His re-

search interests include shape modeling and motion recovery from images, analysis of

microscopy images, and Augmented Reality. He has (co)authored over 150 publica-

tions in refereed journals and conferences. He is an IEEE fellow and has been a PAMI

associate editor. He often serves as program committee member, area chair, or program

chair of major vision conferences.

30

	Introduction
	Related Work
	Generating Synthetic Images
	Optimizing the Rendering Parameters
	Image Similarity Measures

	Results
	Gauging the Various Components of the Approach using the UAV Dataset
	Experimental Setup
	Comparing against simply Perturbing the Real Images
	Relative Importance of the Various Rendering Effects
	Importance of Optimizing over the Rendering Parameters
	Influence of the Number of Synthetic and Real Images
	Optimal Performance

	Detecting Multiple Kinds of Aircrafts
	Comparing against another recent Image-Based Synthesis Approach

	Conclusion

