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Abstract. Extracting linear structures, such as blood vessels or den-
drites, from images is crucial in many medical imagery applications, and
many handcrafted features have been proposed to solve this problem.
However, such features rely on assumptions that are never entirely true.
Learned features, on the other hand, can capture image characteristics
difficult to define analytically, but tend to be much slower to compute
than handcrafted features. We propose to complement handcrafted meth-
ods with features found using very recent Machine Learning techniques,
and we show that even few filters are sufficient to efficiently leverage
handcrafted features. We demonstrate our approach on the STARE,
DRIVE, and BF2D datasets, and on 2D projections of neural images
from the DIADEM challenge. Our proposal outperforms handcrafted
methods, and pairs up with learning-only approaches at a fraction of
their computational cost.

1 Introduction

The extraction of linear or tubular structures has received a lot of attention from
the medical imaging community, as it is the first step to recover the structure
of blood vessels and neurons from images. Such extraction can be reliable if a
human operator uses a semi-automated system [13]. However, imaging nowadays
efficiently generates images with increasingly higher resolution, and the amount
of data to analyse is overwhelming. Manually processing images thus becomes
infeasible, even with very efficient semi-automated systems, and as such there is
a need for automatic, reliable and fast, ways of extracting linear structures.

In order to fully automatize this extraction, many handcrafted approaches
have been proposed. A common technique is to rely on the eigenvalues of the
image Hessian matrix [11], which can be computed from the responses of a few
separable filters [19,21], as in the multiscale vessel enhancement filtering (EF)
method [7]. Other approaches rely on differential kernels [1], look for parallel
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edges [6], or fit superellipsoids to the image stack. A recent successful approach
is the Optimally Oriented Flux (OOF) [12], computed by convolving the second
derivatives of the image with the N-dimensional unit ball.

While these handcrafted methods are typically fast, the quality of their re-
sults is limited. This is because actual linear structures do not necessarily con-
form to the assumptions they make. For example, OOF sometimes provides weak
responses, especially at bifurcations and crossovers, and yet these locations are
crucial for the automated tracing of the tree structure underlying the input
image. Moreover, its effectiveness on noisy data is rather poor.

Several authors used Machine Learning techniques to avoid making strong
assumptions. [18, 8] apply a Support Vector Machine to the responses of ad hoc
filters. [18] considers the Hessian’s eigenvalues, while the Rotational Features
of [8] use steerable filters. More recently, [17] used a dictionary learning method
to learn a set of linear filters on images of linear structures, by contrast with hard-
coding them. In particular, it shows that convolving images with this filter bank
gives responses that, when fed to an SVM, outperform state-of-the-art methods
including EF, OOF, and the Rotational Features. Unfortunately, it requires a
large number of filters—more than one hundred—which makes it impractical for
large images.

In this paper we show that handcrafted methods and learned filters comple-
ment each other very well, as depicted in Fig. 1-right. We can therefore take ad-
vantage of both types of approaches to extract quickly and reliably linear struc-
tures. More precisely, we apply a classifier—we use Random Forests (RFs) [3]
and ¢;-regularized logistic regression (¢;-reg) [10] for efficiency—to the responses
of several filters. For the handcrafted methods, we consider the EF and OOF
methods. The other filters are learned with sparsity constraints, and by contrast
with [17], we use a very small number of them, typically less than 10. Thanks
to this small number, we save a great amount of time not only when extracting
the features from the image, but also during training and testing, as the vectors
to be classified are much more compact.

In short, our approach is significantly more accurate than handcrafted meth-
ods, and much faster than learning-based-only methods, bringing the accuracy
advantage of learning to practical applications. In the remainder of the paper,
we first describe our method, and then give a summary of our experiments com-
paring it against state-of-the-art approaches on challenging data.

2 Method

In this section we describe how we compute linear filters from training images,
how we apply these filters to extract features from images, and how we use these
features to extract linear structures.

2.1 Learning Linear Filters

We learn our linear filters by modeling the distribution of images representative
of the problem at hand. This is done by assuming that there exists a sparse
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Fig. 1. Left: Sample images from the datasets we used to evaluate our approach.
Right: Evaluation of different approaches on the DRIVE dataset. The state-of-the-art
OOF and EF methods are significantly outperformed by learned features. However,
this is only true when the number of learned features is very large, which makes this
prohibitive in real medical imaging applications. We show that the handcrafted meth-
ods can be complemented by a very small number of learned features to obtain the
same quality as learning only approaches, but at a fraction of their computational cost.

representation of the images, from which these images can be retrieved by ap-
plying a linear transformation. Such model was originally proposed in [14], and
has been shown to be useful for image denoising and object recognition.

More exactly, we optimize the following objective function:
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The x;s are training images and the fJs are the learned filters. For each training
image x; the set {m?};_; n is the corresponding representation. Each element
mg has the same size as x;. The * symbol represents the convolution product.
The second term in Eq. (1) forces the {m’} representations to be sparse, while
the third term was used in [17] to counteract the natural tendency of the filters
to sometimes converge to similar solutions.

The minimization process alternates between the optimization with respect
to the representations and the optimization with respect to the filters. For the
former we adopt a proximal method [2], which in the case of £;-norm regulariza-
tion simply consists in performing a step in the direction opposite to the gradient
of the ¢>-regularized term, followed by a component-wise soft-thresholding of the
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argument of the ¢;-penalized term. For the latter we use Stochastic Gradient De-
scent. The images are normalized to have zero mean and variance one, and the
filters are constrained to have norm one to avoid trivial solutions [14].

2.2 Computing Feature Maps with the Learned Filters

Once the filters have been learned, we can use them to compute feature maps.
We simply compute our feature maps by plain convolution:

L =f +x. (2)

Another option is to use the sparse representation {m’} of the image x as fea-
ture maps. However, while sparse representations are important for the learning
procedure, their effectiveness for classification has been recently questioned [16],
and [17] shows that accuracy is not improved by using them as feature maps at
run-time. Unreported experiments yield the same conclusion for our approach.

2.3 Description Vector and Classification

For a given input image, we compute several feature maps, namely one for EF,
one for OOF, and one for each learned filter. For each image location (u,v), we
obtain the vector:

BF[u, o], OOF[u, ], L, o] .. L [u, ] ’ (3)

we call descriptor below. We then apply a Random Forest or a ¢;-regularized
logistic regressor on such descriptors to classify each image location as lying on a
linear structure or on the background. Compared to a traditional logistic regres-
sor, the optimized functional for the ¢;-regularized logistic regressor includes a
£y penalty on the weights, forcing them to be sparse [10].

3 Results and Discussion

In this section we first introduce the datasets we have adopted for the evaluation
of our method, we then describe our evaluation setup, and we finally present our
results and how they compare to existing approaches !. Note that the Rotational
Features [8] were shown to be outperformed by [17] and, as such, we do not
compare against this method.

3.1 Datasets

We use four datasets in our evaluations (see Figure 1-left):
The STARE dataset [9] is composed of 20 RGB retinal fundus slides, along
with two different ground truth sets traced by two different human experts.

! The code, the datasets, and the extensive experimental results are available on the
website http://cvlab.epfl.ch/~rigamont
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Half of the images come from healthy patients and are therefore rather clean,
while the other half present pathologies which partly occlude the underlying
vasculatures and alter their appearances. Moreover, some images are affected by
severe illumination changes which challenge automated algorithms.

The DRIVE dataset [20] is a set of 40 retinal scans captured for the diag-
nosis of systematic diseases. It is simpler than the STARE dataset in that the
pathologies affecting the patients compromise less the image quality. The dataset
is splitted in 20 training images and 20 test images, and ground truth data is
available for both sets.

The BF2D dataset is made by minimum intensity projections of bright-field
micrographs that capture neurons. The images have a very high resolution but
exhibit a low signal-to-noise ratio, because of irregularities in the staining pro-
cess, and the dendrites often appear as point-like structures which can be easily
mistaken for the structured and unstructured noise affecting the images. As a
consequence, the quality of the annotations is poor. Also, only two images have
been annotated by a human expert. For this reason we have selected the image
with the best ground truth as test image, and used the other image for training.

We created the VC6 dataset from a subset of the images composing the pub-
licly available Visual Cortical Layer 6 Neuron dataset [4], which consists of 25
separated dendritic and axonal subtrees from one primary visual cortical neuron,
sectioned into five physical slices. We have taken three image stacks from this
dataset and computed their minimum intensity projections. These projections
exhibit numerous artifacts and have a poor contrast. Their segmentation there-
fore represents a challenging undertaking for automated systems. We selected
the first two images for the training of the algorithms, and retained the third
one for testing. Ground truth data has been reconstructed from the traces made
by the experts.

3.2 Experimental Setup

We first pre-processed the images in the datasets, converting them to grayscale
and rescaling pixel values to zero-mean, unit-variance. For the retinal scans we
only considered the green channel, since it has been shown to present the highest
contrast between vessels and background [15]. We then computed the multiscale
OOF and EF responses.

We also learned several filter banks of different cardinalities, at a single scale.
The size of each filter has been fixed to 21 x 21 pixels to be consistent with the
filter banks used in [17] 2. We have experimented with smaller filter sizes, and
the results show little influence. The gradient step, the regularization parameter,
and all the other parameters involved in the filter learning were manually tuned.

2 Learning a bank of 121 filters posed some problems in the VC6 dataset case, as low
contrast and high noise prevented the learning process to get more than few dozens
of meaningful filters, leading to poor performances (only slightly superior to those of
16 filters). To make a fair comparison, and for the 121 filters/VC6 case only, we have
weighted the training images inversely proportionally to the OOF response, easing
the learning process by focusing only on the parts where OOF responds weakly.
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Fig. 2. Comparing EF,0O0F, the method of [17] with few learned filters only, our
approach, and the original method of [17] with 121 learned filters on the STARE, BF2D,
and VC6 datasets (the results on DRIVE are given in Fig. 1-right). The cardinality
of the learned filter banks (denoted as L) is given between parentheses. Note that
the learning-based approaches outperform handcrafted methods even on the STARE
dataset, where the used filters are not specifically tuned to the characteristics of the
images, but are instead tuned to those of the DRIVE images. The results are averaged
on 10 random trials and over the images of the different datasets. The shades represent
1 standard deviation around the mean value.

To test the generalization power of the learned filter banks, the results re-
ported here for the STARE dataset were obtained with the filters learned on the
DRIVE dataset, even though the former exhibits pathologies and illumination
issues which are not present in the latter.

For classification, except when specifically noted, we have used 600 random
trees learned on 10,000 positive and 10,000 negative samples. Comparisons be-
tween binary masks have been used as a metric in the evaluations.

3.3 Results and Discussion

The Precision/Recall curves [5] averaged over 10 random trials for different ap-
proaches are given in Figs 1-right and 2, while Fig. 3 depicts qualitative results
for a randomly sampled region of a retinal scan. These figures show that our
method and the method of [17] outperform the other methods, but ours is sig-
nificantly faster: Table 1 details the average timings on the DRIVE dataset for
the method we propose, and compares them with those of [17]. Because we use
fewer filters and because the OOF and EF can be implemented in a very efficient,
multi-threaded way, extracting the features is much faster in our approach. The
gap widens considerably as higher-resolution images are considered.

Moreover, our descriptors are much more compact than [17]’s, as their sizes
are divided by more than a factor of 10. This substantially speeds up the training
and testing stages. While [17] considered only SVMs for classification, we found
Random Forests and ¢;-regularized logistic regression well suited for the task at
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Table 1. Average timings recorded for [17] and our approach on the 565 x 584 images
of the DRIVE dataset. The time is expressed in seconds, except for the filter learning
stage, and includes the time spent in reading/writing from disk ([17]: training 0.08s,
testing 20s; our approach: training 0.01s, testing 2.8s). Although strongly paralleliz-
able, implementations were restricted to use a single core to provide a fair evaluation.
The OOF, which accounts for almost 50% of the time spent by our approach in the fea-
ture extraction phase, does not use an optimized implementation. The recorded SVM
training timings do not include the time spent for the grid search on the parameters.

Method Filter Feature Training Testing
Learning |Extraction| RF |(i;-reg|SVM| RF |{i-reg| SVM
[17] several days 10.52 354.02| 0.26 |950.70{152.40| 20.33 [2568.53
our approach|several mins 2.12 55.91 | 0.05 |210.56| 86.70 | 2.84 | 455.97

original image

expert #2 OOF [17]

our approach

Fig. 3. Qualitative segmentation results on a randomly selected part of an image ran-
domly chosen from the DRIVE dataset. True positives are outlined in red, false pos-
itives in green, and false negatives in blue. The segmentation accuracies for [17] and
our approach are comparable, while our approach is much more efficient.

hand, obtaining comparable if not superior results in a fraction of the time (see
Fig. 1-right), and without any need for a precise parameter tuning.

While the performance of logistic regression is inferior to that of Random
Forests, it is still interesting to keep it into account: Its execution time is several
orders of magnitude smaller, which can be appealing in practical applications.

Reducing the number of learned filters yields important speedups not only
at run-time, but also during the learning of the filter banks themselves. A few
minutes are typically required to learn a bank of 9 filters, which have to be com-
pared with days for the larger filter banks in [17]. This, together with the reduced
computational times, allows the practitioner to set up the segmentation pipeline
from scratch and get state-of-the-art results within few dozens of minutes.

4 Conclusion

Through extensive experiments we showed that handcrafted and learned features
can complement each other very well for the extraction of linear structures. This
results in an efficient implementation, useful for practical applications. Our ap-
proach is general and could be used in domains where handcrafted methods exist,
as is the case for the initial steps of many medical image processing algorithms,
benefitting from improvements in the latter.
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