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Abstract

We introduce SharpNet, a method that predicts an ac-

curate depth map given a single input color image, with a

particular attention to the reconstruction of occluding con-

tours: Occluding contours are an important cue for object

recognition, and for realistic integration of virtual objects

in Augmented Reality, but they are also notoriously difficult

to reconstruct accurately. For example, they are a challenge

for stereo-based reconstruction methods, as points around

an occluding contour are only visible in one of the two

views. Inspired by recent methods that introduce normal

estimation to improve depth prediction, we introduce novel

terms to constrain normals, depth and occluding contours

predictions. Since ground truth depth is difficult to obtain

with pixel-perfect accuracy along occluding contours, we

use synthetic images for training, followed by fine-tuning on

real data. We demonstrate our approach on the challenging

NYUv2-Depth dataset, and show that our method outper-

forms the state-of-the-art along occluding contours, while

performing on par with the best recent methods for the rest

of the images. Its accuracy along the occluding contours is

actually better than the “ground truth” acquired by a depth

camera based on structured light. We show this by introduc-

ing a new benchmark based on NYUv2-Depth for evaluat-

ing occluding contours in monocular reconstruction, which

is our second contribution.

1. Introduction

Monocular depth estimation is a very ill-posed yet highly
desirable task for applications such as robotics, augmented
or mixed reality, autonomous driving, and scene under-
standing in general. Recently, many methods have been
proposed to solve this problem using Deep Learning ap-
proaches, either relying on supervised learning [6, 5, 18, 8]
or on self-supervised learning [10, 33, 22], and these meth-
ods often yield very impressive results.

Despite recent advances in monocular depth estimation,
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Figure 1: Our SharpNet method shows significant im-
provement over state-of-the-art monocular depth estima-
tion methods in terms of occluding contours accuracy, and
even produces sharper edges along these contours than
structured-light depth cameras. In this figure we augment
an RGB image from NYUv2 [25] with a virtual Stanford
rabbit using different depth maps for occlusion-aware in-
tegration. The first three rows show the depth map used
for occlusion-aware insertion (left) and resulting augmenta-
tion (right). An error of only a few pixels along occluding
contours can significantly degrade the realism of the inte-
gration, comparatively to manual insertion (last row) using
a binary mask.

occluding contours remain difficult to reconstruct correctly
from depth as shown in Fig. 1, while they are still an im-
portant cue for object recognition, and for augmented real-
ity or path planning, for example. This has several causes:
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First, the depth annotations of training images are likely to
be inaccurate along the occluding contours, if the depth an-
notations are obtained with a stereo reconstruction method
or a structured light camera. This is for example the case
for the NYUv2-Depth dataset [25], which is an important
benchmark used by many recent works for evaluation. This
is because on one or both sides of the occluding contours
lie 3D points that are visible in only one image, which chal-
lenges the 3D reconstruction [27]. Structured light cameras
essentially rely on stereo reconstruction, where one image is
replaced by a known pattern [11], and therefore suffer from
the same problem. Secondly, occluding contours, despite
their importance, represent a small part of the images, and
may not influence the loss function used during training if
they are not handled with special care.

In this paper, we show that it is possible to learn to re-
construct occluding contours more accurately by adding a
simple term that constrains the depth predictions together
with the occluding contours during learning. This approach
is inspired by recent works that predict the depths and nor-
mals for an input image, and enforce constraints between
them [30, 23, 35]. A similar constraint between depth and
occluding contours can be introduced, and we show that this
results in better reconstructions along the occluding con-
tours, without degrading the accuracy of the rest of the re-
construction.

Specifically, we train a network to predict depths, nor-
mals, and occluding contours for an input image, by min-
imizing a loss function that integrates constraints between
the depths and the occluding contours, and also between
depths and normals. We show that these two constraints
can be integrated in a very similar way with simple terms
in the loss function. At run-time, we can predict only the
depth values, making our method suitable for real-time ap-
plications since it runs at 150 fps on 640× 480 images.

We show that each aspect of our training procedure im-
proves the depth output. In particular, our experiments show
that the constraint between depths and occluding contours
is important, and that the improvement is not only due to
multi-task learning. Learning to predict the normals in ad-
dition to the depths and the occluding contours helps the
convergence of training towards good depth predictions.

We demonstrate our approach on the NYUv2-Depth
dataset, in order to compare it against previous methods.
Since we need training data with pixel perfect depth anno-
tation along the occluding contours, we use synthetic im-
ages to pretrain the network before fine-tuning on NYUv2-
Depth. We simply use the object instance boundaries given
by the synthetic dataset as training annotations of the oc-
cluding contours. However, we only use the depth ground
truth as training data when finetuning on the NYUv2-Depth
dataset.

A proper evaluation of the accuracy of the occluding

contours is difficult. Since the “ground truth” depth data
is typically noisy along occluding contours, as in NYUv2-
Depth, an evaluation based on this data would not be repre-
sentative of the actual quality. Even with better depth data,
identifying occluding contours automatically as ground
truth depth discontinuities would be sensitive to the param-
eters used by the identification method [1] (see Fig. 4).

We therefore decided to annotate manually the occlud-
ing contours in a subset of 100 images randomly sampled
from the NYUv2-Depth validation set, which we call the
NYUv2-OC dataset. Our annotations and our code for the
evaluation of the occluding contours are publicly available
for comparison. We evaluate our method on this data in
terms of 2D localization, in addition to evaluating depth
estimation on the NYUv2-Depth validation set using more
standard depth estimation metrics [6, 5, 18]. Our experi-
ments show that while achieving competitive results on the
NYUv2-Depth benchmark by placing second on all of them,
we outperform all previous methods in terms of occlud-
ing contours 2D localization, especially the current leading
method on monocular depth estimation [15].

2. Related Work

Monocular depth estimation from images made signifi-
cant progress recently. In the following, we mainly discuss
the most recent methods and popular techniques that help
monocular depth estimation: Learning from synthetic data
and using normals for learning to predict depths.

2.1. Supervised and Self­Supervised Monocular
Depth Estimation

With the development of large datasets of images anno-
tated with depth data [25, 9, 26, 39, 3, 20], many super-
vised methods have been proposed. Eigen et al. [6, 5] used
multi-scale depth estimation to capture global and local in-
formation to help depth prediction. Given the remarkable
performances they achieved on both popular benchmarks
NYUv2-Depth [25] and KITTI [9], more work extended
this multi-scale approach [19, 34]. Previous work also con-
sidered ordinal depth classification [8] or pair-wise depth-
map comparisons [2] to add local and non-local constraints.
Our approach relies on a simpler mono-scale architecture,
making it efficient at run-time. Our constraints between
depths, normals, and occluding contours guide learning to-
wards good depth prediction for the whole image.

Laina et al. [18] exploited the power of deep residual
neural networks [12] and showed that using the more ap-
propriate BerHu [21, 40] reconstruction loss yields better
performances. However, their end results are quite smooth
around occluding contours, making their method inappro-
priate for realistic occlusion-aware augmented reality.

Jiao et al. [15] noticed that the depth distribution of the
NYUv2 dataset is heavy-tailed. The authors therefore pro-
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posed an attention-driven loss for the network supervision,
and paired the depth estimation task with semantic segmen-
tation to improve performances on the dataset. However,
while they currently achieve the best performance on the
NYUv2-Depth dataset, their approach suffers from a bias
towards high-depth areas such as windows, corridors or mir-
rors. While this translates into a significant decrease of the
final error, it also produces blurry depth maps, as one can
see in Fig. 1. By contrast, our reconstructions tend to be
much sharper along the occluding boundaries as desired,
and our method is much faster, making it suitable for real-
time applications.

Self-supervised learning methods have also become pop-
ular for monocular reconstruction, as they exploit the con-
sistency between multiple views [10, 33, 22, 36, 37, 28].
While such approach is very appealing, it does not yet reach
the accuracy of supervised methods in general, and it should
be preferred only when no annotated data are available for
supervised learning.

2.2. Edge­ and Occlusion­Aware Depth Estimation

Wang et al. [30] introduced their SURGE method to im-
prove scene reconstruction on planar and edge regions by
learning to jointly predict depth and normal maps, as well as
edges and planar regions. They then refine the depth predic-
tion by solving an optimization problem using a Dense Con-
ditional Random Field (DCRF). While their method yields
appealing reconstruction results on planar regions, it still
underperforms state-of-the-art methods on global metrics,
and the use of DCRF makes it unsuited for real-time ap-
plications. Furthermore, SURGE [30] is evaluated on the
reconstruction quality around edges using standard depth
error metrics, but not on the 2D localization of their occlud-
ing contours.

Many self-supervised methods [36, 35, 37, 28, 10] have
incorporated edge- or occlusion-aware geometry constraints
which exist when working with stereo pairs or sequences of
images as provided in the very popular KITTI depth esti-
mation benchmark [9]. However, although these methods
can perform monocular depth estimation at test time, they
require multiple calibrated views at training time. They
are therefore unable to work on monocular RGB-D datasets
such as NYUv2-Depth [25] or SUN-RGBD [26].

[31, 14] worked on occlusion-aware depth estimation to
improve reconstruction for augmented reality applications.
While achieving spectacular results, they however require
one or multiple light-field images, which are more costly to
obtain than ubiquitous RGB images.

Conscious of the lack of evaluation metrics and bench-
marks for quality of edge and planes reconstruction from
monocular depth estimates, Koch et al. [16] introduced the
iBims-v1 dataset, a high quality benchmark of 100 RGB
images with their associated depth map. This work tack-

les the low quality of depth maps of other RGB-D datasets
such as [26] and [25], and introduces annotations and met-
rics for occluding contours and planarity of planar regions.
Our evaluation method of occluding contours reconstruc-
tion quality is based on their work.

3. Method

As shown in Fig. 2, we train a network f(I; Θ) to pre-
dict, for a training color image I , a depth map D̂, a map
of occluding contours probabilities Ĉ, and a map N̂ of sur-
face normals. Although we focus on high quality depth-
maps prediction, our occluding contours and normals map
can also be used for other applications. Our approach gen-
eralizes well to various indoor datasets in terms of geometry
estimation as can be seen in Fig. 3.

Figure 2: The architecture of our “U-net”-shape [24] multi-
task encoder-decoder network. We use a single ResNet50
encoder which learns an intermediate representation that is
shared by all decoders. With this setting, the representation
generalizes better for all tasks. We use skip connections
between features of the encoder and of the decoder at cor-
responding scales.

3.1. Training Overview

We first train f on the synthetic dataset PBRS [39],
which provides the ground truth for the depth map D, the
normals map N , and the binary map of object instance con-
tours C for each training image I . Since occluding contours
are not directly provided in the PBRS dataset, we choose
to use the object instance contours C as a proxy. We ar-
gue that on a macroscopic scale, a large proportion of oc-
cluding contours in an image are due to objects occluding
one another. However, we show that we can also enable
our network to learn internal occluding contours within ob-
jects even without “pure” occluding contours supervision.
Indeed, we make use of constraints on depth map and oc-
cluding contour predictions D̂ and Ĉ respectively (see Sec-
tion. 3.4 for more details) to enforce the contour estimation
task to also predict intra-object occluding boundaries.
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Figure 3: Several predictions on single RGB images from multiple real RGB-D datasets. “MP” stands for Matterport3D,
“GT” stands for ground truth and “Pred” for prediction. We highlight areas where we successfully reconstructed geometry
while Kinect depth maps were inaccurate (the chair should be closer than the lamp in first image). Ground truth normals are
computed using code from [25] for NYUv2 and [20] for SUN-RGBD. Normal maps are already provided in Matterport3D.

We then finetune f on the NYUv2-Depth dataset with-
out direct supervision on the occluding contours or normals
(Lc and Ln described below): Even though [17] and [25]
produce ground truth normals map with different estimation
methods operating on the Kinect-v1 depth maps, their out-
put results are generally noisy. Occluding contours are not
given in the original NYUv2-Depth dataset. Although one
could automatically extract them using edge detectors [1, 4]
on depth maps, such extraction is very sensitive to the de-
tector’s parameters (see Figure 4). Instead, we introduce
consensus terms that explicitly constrain the predicted con-
tours, normals and depth maps together (Ldc and Ldn de-
scribed below) at training time.

At test-time, we can choose to use only the depth stream
of f if we are not interested in the normals nor the bound-
aries, making inference very fast.

3.2. Loss Function

We estimate the parameters Θ of network f by minimiz-
ing the following loss function over all the training images:

L = λdLd(D, D̂) + λcLc(C, Ĉ) + λnLn(N , N̂) +

Ldc(D̂, Ĉ) + Ldn(D̂, N̂) , (1)

where

• Ld, Lc, and Ln are supervision terms for the depth, the
occluding contours, and the normals respectively. We
adjust weights λd, λc, and λn during training so that

RGB σ− = 0.15, σ+ = 0.3

Depth σ− = 0.01, σ+ = 0.1

Figure 4: A RGB-D sample of NYUv2-Depth for which we
manually annotated occluding contours in NYUv2-OC, (in
red lines). We show in black the edges detected on ground
truth Kinect-v1 depth map using different Canny detector
parameters (σ− and σ+ denote low and high threshold re-
spectively). Highly permissive detectors often yield many
spurious contours, whereas restrictive ones miss many true
contours. Automatic occluding contours extraction from
Kinect depth maps is therefore unreliable for extraction of
ground truth occluding contours, motivating our manually
annotated NYUv2-OC dataset.

we focus first on learning local geometry (normals and
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boundaries) then on depth. See Section 4.1 for more
details.

• Ldc and Ldn introduce constraints between the pre-
dicted depth map and the predicted contours, and be-
tween the predicted depth map and the predicted nor-
mals respectively.

We detail these losses below. All losses are computed using
only valid pixel locations. The PBRS synthetic dataset pro-
vides such a mask. When finetuning on NYUv2-Depth, we
mask out the white pixels on the images border.

3.3. Supervision Terms Ld, Lc, and Ln

The supervision terms on the predicted depth and normal
maps are drawn from previous works on monocular depth
prediction. For our term on occluding contours prediction,
we rely on previous work for edge prediction.

Depth prediction loss Ld. As in recent works, our loss
on depth prediction applies to log-distances. We use the
BerHu loss function [21, 40], as it was shown in [18] to
result in faster converging and better solutions:

Ld(D, D̂) =
1

N

∑

i

BerHu(log(D̂i)− log(Di))

+
1

N

∑

i

‖∇ log(D̂i)−∇ log(Di))‖
2 .

(2)

The sum is over all the N valid pixel locations. The
BerHu (also known as reverse Huber) function is defined as
a L2 loss for large deviations, and a L1 loss for small ones.
As in [18], we take the c parameter of the BerHu function
as c = 1

5 maxi(| log(D̂i)− log(Di)|).

Occluding contours prediction loss Lc. We use the re-
cent attention loss from [29], which was developed for 2d
edge detection, to learn to predict the occluding contours.
This attention loss helps dealing with the imbalance of edge
pixels compared to non-edge pixels:

AL(p̂, p) =

{
−αβ(1−p̂)γ log(p̂) if p = 1

−(1− α)βp̂γ

log(1− p̂) else
(3)

where (β, γ) are hyper-parameters which we set to the au-
thors values (4, 0.5), and α is computed image per image as
the proportion of contour pixels. We use this pixel-wise at-
tention loss to define the occluding contours prediction loss:

Lc(C, Ĉ) =
1

N

∑

i

AL(Ĉi, Ci) . (4)

As mentioned above, this loss is disabled when finetuning
on the NYUv2-Depth dataset.

Normals prediction loss Ln. For normals prediction, we
use a common method introduced by Eigen et al. [5] which
is to minimize, for all valid pixels i, the angle between the
predicted normals N̂ i and their ground truth counterpart
N i. This angle minimization is performed by maximizing
their dot-product. We therefore used the following loss:

Ln(N , N̂) =
1

N

∑

i

(
1−

< N̂ i,N i >

‖N̂ i‖‖N i‖

)
. (5)

This loss slightly differs from the one of [5] as we limit it
to positive values. As mentioned earlier, this loss is disabled
when finetuning on the NYUv2-Depth dataset.

3.4. Consensus Terms Ldc and Ldn

Depth-contours consensus term. In order to force the
network to predict sharp depth edges at occluding contours
where strong depth discontinuities occur, we propose the
following loss between the predicted occluding contours
probability map Ĉ and the predicted depth map D̂:

Ldc(D̂, Ĉ) = −
1

N

∑

i

log(Ĉi) · ‖∇(D̂i)‖
2‖∆(D̂i)‖

+ µ

(
‖Ĉ‖ −

1

N

∑

i

log(1− Ĉi) · e
−‖∆(D̂i)‖

)
.

(6)

This encourages the network to associate pixels with large
depth gradients with occluding contours: High-gradient ar-
eas will lead to a large loss unless the occluding contour
probability is close to one. [10, 13] also used this type of
edge-aware gradient-loss, although they used it to impose
consensus between photometric gradients and depth gra-
dients. However, relying on photometric gradients can be
dangerous: textured areas can exhibit strong image gradi-
ents without strong depth gradients.

Depth-normals consensus loss. Depth and normals are
two highly correlated entities. Thus, to impose geometric
consistency during prediction between the normal and depth
predictions D̂ and N̂ , we use the following loss:

Ldn(D̂, N̂) =
1

N

∑

i

(
1−

< ûi, n̂i >

‖ûi‖‖n̂i‖

)
, (7)

where n̂i = (n̂i
x, n̂

i
y)

T is extracted from the 3D vec-

tor N̂ i = (n̂i
x, n̂

i
y, n̂

i
z)

T , and ûi = (∂xD̂i, ∂yD̂i) is com-
puted as the 2D gradient of the depth map estimate using
finite differences. This term enforces consistency between
the normals and depth predictions in a similar fashion as
in [30, 35, 7]. However, our formulation of depth-normals
consensus is much simpler than those proposed in previous
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works as they express their constraint in 3D world coordi-
nates, thus requiring the camera calibration matrix. Instead,
we only assume that orthographic projection holds, which
is a good first order assumption [32].

Imposing this constraint during finetuning allows us to
constrain normals, and depth, even when the ground truth
normals N are not available (or accurate enough for our
application).

4. Experiments

We evaluate our method and compare it to previous
work using standard metrics, as well as the depth boundary
edge (DBE) accuracy metric introduced by Koch et al. [16]
(see following Section 4.2 and Eq. (8) for more details). We
show that our method achieves the best trade-off between
global reconstruction error and DBE.

4.1. Implementation Details

We implement our work in Pytorch and make our pre-
trained weight, training and evaluation code publicly avail-
able.1 Both training and evaluation are done on a single
high-end NVIDIA GTX 1080 Ti GPU.

Datasets. We first train our network on the synthetic
PBRS [39] dataset, using depth and normals maps anno-
tations, along with object instance boundaries maps which
we use as a proxy to occluding contours annotations. We
split the PBRS dataset in training/validation/test sets using
a 80%/10%/10% ratio. We then finetune our network on the
NYUv2-Depth training set using only depth data. Finally,
we use the NYUv2-Depth validation set for depth evalua-
tion and our new NYUv2-OC for occluding contours accu-
racy evaluation.

Training. Training a multi-task network requires some
caution: Since several loss terms are involved, and in par-
ticular one for each task, one should pay special attention to
any suboptimal solution for one task due to ‘over-learning’
another. To monitor each task individually, we monitor each
individual loss along with the global training loss and make
sure that all of them decrease during training. When setting
all loss coefficients equal to one, we noticed that the nor-
mals loss Lnormals decreased faster than others. Similarly,
we found that learning boundaries was much faster than
learning depth. As [38], we also argue that this is because
local features such as contours or local planes, i.e. where
normals are constant, are easier to learn since they appear
in almost all training examples. Training depth, however,
requires the network to exploit context data such as room
layout in order to regress a globally consistent depth map.

1 www.github.com/MichaelRamamonjisoa/SharpNet

Based on those observations, we chose to learn the eas-
ier tasks first, then use them as guidance to the more com-
plex task of depth estimation through our novel consensus
loss terms of Eqs. (7) and (6). For finetuning on real data
with the NYUv2 dataset, we first disabled the consensus
terms and froze the contours and normals decoders in or-
der to first bridge the depth domain gap between PBRS
and NYUv2. After convergence, we finetuned the network
again with consensus terms back on, which helped enhanc-
ing predictions by ensuring consistency between geomet-
ric entities. We found that it was necessary to freeze the
normals and contours decoders during finetuning to prevent
their predictions Ĉ and N̂ from degrading until being un-
able to play their geometry guidance role. We argue that
this is due to (1) a larger synthetic-to-real domain gap for
depth than for contours and normals, and (2) noisy depth
ground truth with some inaccuracies along occluding con-
tours and crease along walls. We therefore relied on the
ResNet50 encoder to learn a representation which produces
geometrically consistent predictions Ĉ, N̂ and D̂.

4.2. Evaluation Method

We evaluate our method on the benchmark dataset
NYUv2 Depth [25]. The most common metrics are:
Thresholded accuracies (δ1, δ2, δ3), linear and logarithmic
Root Mean Squared Error RMSElin and RMSElog , Abso-
lute Relative difference rel, and logarithmic error log10.

NYUv2-Depth benchmark evaluation. We have run a
comparative study between our method and previous ones,
summarized in Table 1. Since authors evaluating on the
NYUv2-Depth benchmark often apply different evaluation
methods, fair comparison is difficult to perform. For in-
stance, [34] and [8] evaluate on crops with regions pro-
vided by Eigen et al. [5]. Some authors also clip resulting
depth-maps to the valid depth sensor range [0.7m; 10m].
Most importantly, not all the authors make their predic-
tion and/or evaluation code publicly available. The au-
thors of [15] kindly shared their predictions on the NYUv2-
Depth dataset with us, and the following evaluation of their
method was obtained based on the depth map predictions
they provided us with. All other mentioned methods have
released their predictions online.

Fair comparison is ensured by performing evaluation of
each method solely using its associated depth map predic-
tions and one single evaluation code.

Occluding contours location accuracy. To evaluate oc-
cluding contours location accuracy, we follow the work of
Koch et al. [16] as they proposed an experimental method
for such evaluation. Since it is fundamental to examine
whether predicted depths maps are able to represent all
occluding contours as depth discontinuities in an accurate

6
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Evaluated on full NYUv2-Depth Evaluated on our NYUv2-OC
Method Accuracy ↑ (δi = 1.25i) Error ↓ ǫacc

DBE
↓(px) {σ−, σ+}

δ1 δ2 δ3 rel log10 RMSE (lin) RMSE (log) {0.1, 0.2} {0.01, 0.1} {0.005, 0.06} {0.03, 0.05}

Eigen et al. [5] (VGG) 0.766 0.949 0.988 0.195 0.068 0.660 0.217 2.895 3.065 3.199 3.203
Eigen et al. [5] (AlexNet) 0.690∗ 0.911∗ 0.977∗ 0.250∗ 0.082∗ 0.755∗ 0.259∗ 2.840 3.029 3.202 3.242

Laina et al. [18] 0.818 0.955 0.988 0.170 0.059 0.602 0.200 3.901 4.033 4.116 4.133
Fu et al. [8] 0.850 0.957 0.985 0.150 0.052 0.578 0.194 3.714 3.754 4.040 4.062

Jiao et al. [15] 0.909 0.981 0.995 0.133 0.042 0.401 0.146 6.389∗ 4.073∗ 4.179∗ 4.190∗

Ours 0.888 0.979 0.995 0.139 0.047 0.495 0.157 2.272 2.629 3.066 3.152

Table 1: Our final evaluation results. Bold and underlined results indicate first and second place respectively. Asterisks
indicate the last place. Numerical results might vary from the original papers, as we evaluated all methods with the same
code, using only the authors depth map predictions. Results are evaluated in the center crop proposed by [5] and clipped
depth predictions to range [0.7m, 10m].

Figure 5: The truncated chamfer distance is computed as the
sum Euclidean distances Ei (in green) between the detected
edge Ŷi (in black) and the ground truth edge Yi (in red). The
Ei above 10 pixels (above the blue dashed line) are ignored.

way, they analyzed occluding contours accuracy perfor-
mances by detecting edges in predicted and ground truth
depth maps and comparing those edges.

Since acquired depth maps in the NYUv2-Depth dataset
are especially noisy around occluding boundaries, we man-
ually annotated a subset of the dataset with occluding con-
tours, building our NYUv2-OC dataset, which we used for
evaluation. Several samples of our NYU-OC dataset are
shown in Fig. 4 and Fig. 7. In order to evaluate the pre-
dicted depth maps’ D quality in terms of occluding con-
tours reconstruction, binary edges Ŷ are first extracted from
D̂ with a Canny detector.2 They are then compared to the
ground truth annotated binary edges Y from our NYU-OC
dataset by measuring the a Truncated Chamfer Distance

(TCD). Specifically, for each pixel Ŷi of Ŷ we compute its
euclidean distance Ei to the closest edge pixel Ŷj = 1. If
the distance between Ŷi and Ŷj is bigger than 10 pixels we
set ei to 0 in order to evaluate predicted edges only around
the ground truth edges as seen in Fig. 5. This is done ef-
ficiently using Euclidean Distance Transform on Y . The
depth boundary edge (DBE) accuracy is then computed as
the mean TCD over detected edges Ŷi = 1:

ǫaccDBE =
1

∑
i

Ŷi

∑

i

Ei · Ŷi, (8)

2Edges are extracted from depth maps with normalized dynamic range.

Figure 6: Our method outperforms state-of-the-art in terms
of trade-off between global depth reconstruction error and
occluding boundary accuracy.

We compare our method against state-of-the-art depth
estimation methods using this metric and different Canny
parameters. Evaluation results are shown in Table 1: We
outperform all state-of-the-art methods on occluding con-
tours accuracy, while being a competitive second best on
standard depth estimation evaluation metrics.

Since the detected edges in Ŷ are highly sensitive to the
edge detector’s parameters (see Fig.4), we evaluate the DBE
accuracy ǫaccDBE using many random combinations of thresh-
old parameters σ+ and σ− of the Canny edge detector. The
results are shown in Fig. 6.

4.3. Ablation Study

To prove the impact of our geometry consensus terms,
we performed an ablation study to analyze the contribution
of training with synthetic and real data, as well as our novel
geometry consensus terms. Evaluation of different models
on our NYUv2-OC dataset are shown in Table 2, confirm-
ing their contribution to both improved depth reconstruction
results over the whole NYUv2-Depth dataset and occluding
contours accuracy.
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RGB Laina et al [18] Fu et al [8] Jiao et al [15] GT (NYUv2) SharpNet

Figure 7: Several examples of images from our NYUv2-OC dataset and their associated depth map estimate for different
methods. The second row for each image shows the in black the detected edges on those estimates using a Canny edge
detector (in black) with σ− = 0.03 and σ+ = 0.05, overlaid on our manually annotated ground truth in red. Our SharpNet
method not only creates sharper occluding contours, leading to less spurious and erroneous contours than with [8] the Kinect-
v1 depth-map; it also leads to much better located edges than other methods.

Method Training Dataset RMSElog ǫacc
DBE

↓(px) {σ−, σ+}

{0.1, 0.2}{0.01, 0.1}{0.005, 0.06}{0.03, 0.05}

w/o consensus PBRS 0.304∗ 2.321 2.751∗ 3.298∗ 3.380∗

w/ consensus PBRS 0.262 2.046 2.332 2.574 2.645

w/o consensus PBRS + NYUv2 0.163 2.600∗ 2.638 3.127 3.182
w/ consensus PBRS + NYUv2 0.157 2.272 2.629 3.066 3.152

Table 2: Our added geometry consensus terms brings a sig-
nificant performance boost by guiding the depth towards
learning accurate occluding contours and it also helps keep-
ing a good trade-off between occluding contours accuracy
and depth reconstruction during the necessary fine-tuning
on real RGB-D data. RMSElog is computed over the full
NYUv2-Depth dataset. Notations of Table. 1 are used here.

5. Conclusion

In this paper, we show that our SharpNet method is
able to achieve competitive depth reconstruction from a sin-
gle RGB image with particular attention to occluding con-
tours thanks to geometry consensus terms introduced dur-
ing multi-task training. Our high-quality depth estimation
which yields high accuracy occluding contours reconstruc-
tion allows for realistic integration of virtual objects in real-
time augmented reality as we achieve 150 fps inference
speed. We show the superiority of our SharpNet over state-
of-the-art by introducing a first version of our new NYUv2-
OC occluding contours dataset, which we plan to extend in
future work. As by-products of our approach, high-quality
normals and contours predictions can also be a useful rep-
resentation for other computer vision tasks.
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