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Abstract

Current methods for depth map prediction from monoc-

ular images tend to predict smooth, poorly localized con-

tours for the occlusion boundaries in the input image. This

is unfortunate as occlusion boundaries are important cues

to recognize objects, and as we show, may lead to a way

to discover new objects from scene reconstruction. To im-

prove predicted depth maps, recent methods rely on vari-

ous forms of filtering or predict an additive residual depth

map to refine a first estimate. We instead learn to pre-

dict, given a depth map predicted by some reconstruction

method, a 2D displacement field able to re-sample pixels

around the occlusion boundaries into sharper reconstruc-

tions. Our method can be applied to the output of any depth

estimation method and is fully differentiable, enabling end-

to-end training. For evaluation, we manually annotated the

occlusion boundaries in all the images in the test split of

popular NYUv2-Depth dataset. We show that our approach

improves the localization of occlusion boundaries for all

state-of-the-art monocular depth estimation methods that

we could evaluate ([35, 10, 6, 31]), without degrading the

depth accuracy for the rest of the images.

1. Introduction

Monocular depth estimation (MDE) aims at predicting a

depth map from a single input image. It attracts many inter-

ests, as it can be useful for many computer vision tasks and

applications, such as scene understanding, robotic grasping,

augmented reality, etc. Recently, many methods have been

proposed to solve this problem using Deep Learning ap-

proaches, either relying on supervised learning [7, 6, 35, 10]

or on self-learning [17, 58, 47], and these methods already

often obtain very impressive results.

∗ Authors with equal contribution.

(a) (b)

(c) (d)

Figure 1. (a) Input image overlaid with our occlusion bound-

ary (OB) manual annotation from NYUv2-OC++ in green, (b)

Ground truth depth from NYUv2-Depth, (c) Predicted depth us-

ing [48], (d) Refined depth using our pixel displacement method.

However, as demonstrated in Fig. 1, despite the recent

advances, the occlusion boundaries in the predicted depth

maps remain poorly reconstructed. These occlusion bound-

aries correspond to depth discontinuities happening along

the silhouettes of objects [53, 33]. Accurate reconstruction

of these contours is thus highly desirable, for example for

handling partial occlusions between real and virtual objects

in Augmented Reality applications or more fundamentally,

for object understanding, as we show in Fig. 2. We believe

that this direction is particularly important: Depth predic-

tion generalizes well to unseen objects and even to unseen

object categories, and being able to reconstruct well the oc-

clusion boundaries could be a promising line of research for

unsupervised object discovery.

In this work, we introduce a simple method to overcome

smooth occlusion boundaries. Our method improves their

sharpness as well as their localization in the images. It relies

on a differentiable module that takes an initial depth map

provided by some depth prediction method, and re-sample

it to obtain more accurate occlusion boundaries. Option-

ally, it can also take the color image as additional input for

guidance information and obtain even better contour local-

1

ar
X

iv
:2

00
2.

12
73

0v
3 

 [
cs

.C
V

] 
 1

0 
M

ay
 2

02
0

https://michaelramamonjisoa.github.io/projects/DisplacementFields


(a) (b) (c) (d)
Figure 2. Application of our depth map refinement to 3D object

extraction. (a-b) and (c-d) are two point cloud views of our ex-

tracted object. The left column shows point clouds extracted from

the initially predicted depth image while the right one shows the

result after using our depth refinement method. Our method sup-

presses long tails around object boundaries, as we achieve sharper

occlusion boundaries.

ization. This is done by training a deep network to pre-

dict a 2D displacement field, applied to the initial depth

map. This contrasts with previous methods that try to im-

prove depth maps by predicting residual offsets for depth

values [30, 64]. We show that predicting displacements in-

stead of such a residual helps reaching sharper occluding

boundaries. We believe this is because our module enlarges

the family of functions that can be represented by a deep

network. As our experiments show, this solution is com-

plementary with all previous solutions as it systematically

improves the localization and reconstruction of the occlu-

sion boundaries.

In order to evaluate the occlusion boundary reconstruc-

tion performance of existing MDE methods and of our pro-

posed method, we manually annotated the occlusion bound-

aries in all the images of the NYUv2 test set. Some annota-

tions are shown in Fig. 3 and in the supplementary material.

We rely on the metrics introduced in [34] to evaluate the re-

construction and localization accuracy of occlusion bound-

aries in predicted depth maps. We show that our method

quantitatively improves the performance of all state-of-the-

art MDE methods in terms of localization accuracy while

maintaining or improving the global performance in depth

reconstruction on two benchmark datasets.

In the rest of the paper, we first discuss related work. We

then present our approach to sharpen occlusion boundaries

in depth maps. Finally, we describe our experiments and

results to prove how our method improves state-of-the-art

MDE methods.

2. Related Work

Occlusion boundaries are a notorious and important

challenge in dense reconstruction from images, for multi-

ple reasons. For example, it is well known that in the case

of stereo reconstruction, some pixels in the neighborhood of

occluding boundaries are hidden in one image but visible in

the other image, making the task of pixel matching difficult.

In this context, numerous solutions have already been pro-

posed to alleviate this problem [11, 27, 32, 13]. We focus

here on recent techniques used in monocular depth estima-

tion to improve the reconstruction of occlusion boundaries.

2.1. Deep Learning for Monocular Depth Estima­
tion (MDE) and Occlusion Boundaries

MDE has already been studied thoroughly in the past due

to its fundamental and practical importance. The surge of

deep learning methods and large scale datasets has helped

it improve continuously, with both supervised and self-

supervised approaches. To tackle the scale ambiguity dis-

cussed in MDE discussed in [7], multi-scale deep learning

methods have been widely used to learn depth priors as they

extract global context from an image [6]. This approach

has seen continuous improvement as more sophisticated and

deeper architectures [51, 21, 35] were being developed.

Ordinal regression [10] was proposed as an alternative

approach to direct depth regression in MDE. This method

reached state-of-the-art on both popular MDE benchmarks

NYUv2-Depth [52] and KITTI [12] and was later ex-

tended [36]. While ordinal regression helps reaching

sharper occlusion boundaries, those are unfortunately often

inaccurately located in the image, as our experiments show.

Another direction to improve the sharpness of object

and occlusion boundaries in MDE is loss function design.

L1-loss and variants such as the Huber and BerHu esti-

mators [45, 66] have now been widely adopted instead of

L2 since they tend to penalize discontinuities less. How-

ever, this solution is not perfect and inaccurate or smooth

occlusion boundaries remains [31]. To improve their re-

construction quality, previous work considered depth gra-

dient matching constraints [6] and depth-to-image gradi-

ent [23, 17] constraints, however for the latter, occlusion

boundaries do not always correspond to strong image gra-

dients, and conversely e.g. for areas with texture gradients.

Constraints explicitly based on occlusion boundaries have

also been proposed [62, 61, 48], leading to a performance

increase in quality of occlusion boundary reconstruction.

Our work is complementary to all of the above ap-

proaches, as we show that it can improve the localization

and reconstruction of occlusion boundaries in all state-of-

the-art deep learning based methods.

2.2. Depth Refinement Methods

In this section we discuss two main approaches that can

be used to refine depth maps predictions: We first discuss

the formerly popular Conditional Random Fields (CRFs),

then classical filtering methods and their newest versions.

Several previous work used CRFs post-processing po-

tential to refine depth maps predictions. These works typ-

ically define pixel-wise and pair-wise loss terms between

pixels and their neighbors using an intermediate predicted

guidance signal such as geometric features [55] or relia-



Figure 3. Samples of our NYUv2-OC++ dataset, which extends NYUv2-OC from [48]. The selected highlighted regions in red rectangles

emphasize the high-quality and fine-grained annotations.

bility maps [24]. An initially predicted depth map is then

refined by performing inference with the CRF, sometimes

iteratively or using cascades of CRFs [59, 60]. While most

of these methods help improving the initial depth predic-

tions and yield qualitatively more appealing results, those

methods still under-perform state-of-the-art non-CRF MDE

methods while being more computationally expensive.

Another option for depth refinement is to use image en-

hancement methods. Even though these methods do not

necessarily explicitly target occlusion boundaries, they can

be potential alternative solutions to ours and we compare

with them in Section 4.5.

Bilateral filtering is a popular and currently state-of-

the-art method for image enhancement, in particular as a

denoising method preserving image contours. Although

historically, it was limited for post-processing due to its

computational complexity, recent work have successfully

made bilateral filters reasonably efficient and fully differen-

tiable [39, 57]. These recent methods have been successful

when applied in downsampling-upsampling schemes, but

have not been used yet in the context of MDE. Guided fil-

ters [20] have been proposed as an alternative simpler ver-

sion of the bilateral filter. We show in our experiments that

both guided and bilateral filters sharpen occlusion bound-

aries thanks to their usage of the image for guidance. They

however sometime produce false depth gradients artifacts.

The bilateral solver [2] formulates the bilateral filtering

problem as a regularized least-squares optimization prob-

lem, allowing fully differentiable and much faster computa-

tion. However, we show in our experiments that our end-

to-end trainable method compares favorably against this

method, both in speed and accuracy.

2.3. Datasets with Image Contours

Several datasets of image contours or occlusion bound-

aries already exist. Popular datasets for edge detection

training and evaluation were focused on perceptual [44,

43, 1] or object instance [8] boundaries. However, those

datasets often lack annotation of the occlusion relationship

between two regions separated by the boundaries. Other

datasets [50, 26, 25, 56] annotated occlusion relationship

between objects, however they do not contain ground truth

depth.

The NYUv2-Depth dataset [52] is a popular MDE

benchmark which provides such depth ground truth. Sev-

eral methods for instance boundary detection have benefited

from this depth information [18, 5, 49, 19, 4] to improve

their performances on object instance boundaries detection.

The above cited datasets all lack object self-occlusion

boundaries and are sometimes inaccurately annotated. Our

NYUv2-OC++ dataset provides manual annotations for the

occlusion boundaries on top of NYUv2-Depth for all of its

654 test images. As discussed in [48], even though it is a te-

dious task, manual annotation is much more reliable than

automated annotation that could be obtained from depth

maps. Fig. 3 illustrates the extensive and accurate cover-

age of the occlusion boundaries of our annotations. This

dataset enables simultaneous evaluation of depth estimation

methods and occlusion boundary reconstruction as the 100

images iBims dataset [34], but is larger and has been widely

used for MDE evaluation.

3. Method

In this section, we introduce our occlusion boundary re-

finement method as follows. Firstly, we present our hypoth-

esis on the typical structure of predicted depth maps around

occlusion boundaries and derive a model to transform this

structure into the expected one. We then prove our hypoth-

esis using an hand-crafted method. Based on this model,

we propose an end-to-end trainable module which can re-

sample pixels of an input depth image to restore its sharp

occlusion boundaries.

3.1. Prior Hypothesis

Occlusion boundaries correspond to regions in the image

where depth exhibits large and sharp variations, while the



other regions tend to vary much smoother. Due to the small

proportion of such sharp regions, neural networks tend to

predict over-smoothed depths in the vicinity of occlusion

boundaries.

We show in this work that sharp and accurately located

boundaries can be recovered by resampling pixels in the

depth map. This resampling can be formalized as:

∀p ∈ Ω, D(p)← D(p+ δp(p)) , (1)

where D is a depth map, p denotes an image location in do-

main Ω, and δp(p) a 2D displacement that depends on p.

This formulation allows the depth values on the two sides of

occlusion boundaries to be “stitched” together and replace

the over-smoothed depth values. While this method shares

some insights with Deformable CNNs [28] where the con-

volutional kernels are deformed to adapt to different shapes,

our method is fundamentally different as we displace depth

values using a predicted 2D vector for each image location.

Another option to improve depth values would be to pre-

dict an additive residual depth, which can be formalized as,

for comparison:

∀p ∈ Ω, D(p)← D(p) + ∆D(p) . (2)

We argue that updating the predicted depth D̂ using pre-

dicted pixel shifts to recover sharp occlusion boundaries

in depth images works better than predicting the residual

depth. We validate this claim with the experiments pre-

sented below on toy problems, and on real predicted depth

maps in Section 4.

3.2. Testing the Optimal Displacements

To first validate our assumption that a displacement field

δp(p) can improve the reconstructions of occlusion bound-

aries, we estimate the optimal displacements using ground

truth depth for several predicted depth maps as:

∀p ∈ Ω, δp∗ = argmin
δp: p+δp ∈ N (p)

(D(p)− D̂(p+ δp))2 .

(3)

In words, solving this problem is equivalent to finding

for each pixel the optimal displacement δp∗ that recon-

structs the ground truth depth map D from a predicted depth

map D̂. We solve Eq. (3) by performing for all pixels p

an exhaustive search of δp within a neighborhood N (p) of

size 50 × 50. Qualitative results are shown in Fig. 4. The

depth map obtained by applying this optimal displacement

field is clearly much better.

In practice, we will have to predict the displacement field

to apply this idea. This is done by training a deep network,

which is detailed in the next subsection. We then check on a

toy problem that this yields better performance than predict-

ing residual depth with a deep network of similar capacity.

(a) (b) (c)

(d) (e) (f)

Figure 4. Refinement results using the gold standard method de-

scribed in Section 3.2 to recover the optimal displacement field

(best seen in color). (a) is the input RGB image with superimposed

NYUv2-OC++ annotation in green and (d) its associated Ground

Truth depth. (e) is the prediction using [35] with pixel displace-

ments δp from Eq. (3) and (f) the refined prediction. (b) is the

horizontal component of the displacement field δp∗ obtained by

Eq. (3). Red and blue color indicate positive and negative values

respectively. (c) is the horizontal component δx of displacement

field δp∗ along the dashed red line drawn in (b,c,d,e).

3.3. Method Overview

Based on our model, we propose to learn the displace-

ments of pixels in predicted depth images using CNNs. Our

approach is illustrated in Fig. 6: Given a predicted depth

image D̂, our network predicts a displacement field δp to

resample the image locations in depth map D̂ according to

Eq. (1). This approach can be implemented as a Spatial

Transformer Network [29].

Image guidance can be helpful to improve the occlusion

boundary precision in refined depth maps and can also help

to discover edges that were not visible in the initial pre-

dicted depth map D̂. However, it should be noted that our

network can still work even without image guidance.

3.4. Training Our Model on Toy Problems

In order to verify that displacement fields δp presented

in Section 3.1 can be learned, we first define a toy problem

in 1D.

In this toy problem, as shown in Fig. 5, we model the

signals D to be recovered as piecewise continuous func-

tions, generated as sequences of basic functions such as

step, affine and quadratic functions. These samples ex-

hibit strong discontinuities at junctions and smooth varia-

tions everywhere else, which is a property similar to real

depth maps. We then convolve the D signals with random-

size (blurring) Gaussian kernels to obtain smooth versions

D̂. This gives us a training set T of (D̂,D) pairs.

We use T to train a network f(.; Θf ) of parameters to



Figure 5. Comparison between displacement and residual update

learning. Both residual and displacement learning can predict

sharper edges, however residual updates often produce artifacts

along the edges while displacements update does not.

predict a displacement field:

min
Θf

∑

(D̂,D)∈T

∑

p

L
(
D(p)− D̂

(
p+ f(D̂; Θf )(p)

))
.

(4)

and a network g(.; Θg) of parameters to predict a residual

depth map:

min
Θg

∑

(D̂,D)∈T

∑

p

L
(
D(p)− D̂(p) + g(D̂; Θg)(p)

)
,

(5)

where L(.) is some loss. In our experiments, we evaluate

the l1, l2, and Huber losses.

As shown in Fig. 5, we found that predicting a resid-

ual update produces severe artifacts around edges such as

overshooting effects. We argue that these issues arise be-

cause the residual CNN g is also trained on regions where

the values of D̂ and D are different even away from edges,

thus encouraging network g to also correct these regions.

By contrast, our method does not create such overshooting

effects as it does not alter the local range of values around

edges.

It is worth noticing that even when we allow D̂ and D
to have slightly different values in non-edge areas -which

simulates residual error between predicted and ground truth

depth-, our method still converges to a good solution, com-

pared to the residual CNN.

We extend our approach validation from 1D to 2D, where

the 1D signal is replaced by 2D images with different poly-

gons of different values. We apply the same operation to

smooth the images and then use our network to recover the

original sharp images from the smooth ones. We observed

similar results in 2D: The residual CNN always generates

artifacts. Some results of our 2D toy problem can be found

in supplementary material.

3.5. Learning to Sharpen Depth Predictions

To learn to produce sharper depth predictions using dis-

placement fields, we first trained our method in a similar

fashion to the toy problem described in Section 3.4. While

this already improves the quality of occlusion boundaries of

Figure 6. Our proposed pipeline for depth edge sharpening. The

dashed lines define the optional guidance with RGB features for

our shallow network.

all depth map predictions, we show that we can further im-

prove quantitative results by training our method using pre-

dictions of an MDE algorithm on the NYUv2-Depth dataset

as input and the corresponding ground truth depth as target

output. We argue that this way, the network learns to correct

more complex distortions of the ground truth than Gaus-

sian blurring. In practice, we used the predictions of [48]

to demonstrate this, as it is state-of-the-art on occlusion

boundary sharpness. We show that this not only improves

the quality of depth maps predicted by [48] but all other

available MDE algorithms. Training our network using the

predictions of other algorithms on the NYUv2 would fur-

ther improve their result, however not all of them provide

their code or their predictions on the official training set.

Finally, our method is fully differentiable. While we do not

do it in this paper, it is also possible to train an MDE jointly

with our method, which should yield even better results.

4. Experiments

In this section, we first detail our implementation, de-

scribe the metrics we use to evaluate the reconstruction of

the occlusion boundaries and the accuracy of the depth pre-

diction, and then present the results of the evaluations of our

method on the outputs from different MDE methods.

4.1. Implementation Details

We implemented our network using the Pytorch frame-

work [46]. Our network is a light-weight encoder-decoder

network with skip connections, which has one encoder for

depth, an optional one for guidance with the RGB image,

and a shared decoder. Details on each component can be

found in the supplementary material. We trained our net-

work on the output of a MDE method [48], using Adam

optimization with an initial learning rate of 5e-4 and weight

decay of 1e-6, and the poly learning rate policy [65], dur-

ing 32k iterations on NYUv2 [52]. This dataset contains

1449 pairs RGB and depth images, split into 795 samples

for training and 654 for testing. Batch size was set to 1.

The input images were resized with scales [0.75, 1, 1, 5, 2]



(a) (b) (c) (d) (e) (f)
Figure 7. Refinement results using our method (best seen in color). From left to right: (a) input RGB image with NYUv2-OC++ annotation

in green, (b) SharpNet [48] depth prediction, (c) Refined prediction, (d) Ground truth depth, (e) Horizontal and (f) Vertical components of

the displacement field. Displacement fields are clipped between ±15 pixels. Although SharpNet is used as an example here because it is

currently state-of-the-art on occlusion boundary accuracy, similar results can be observed when refining predictions from other methods.

and then cropped and padded to 320 × 320. We tried to

learn on the raw depth maps from the NYUv2 dataset, with-

out success. This is most likely due to the fact that missing

data occurs mostly around the occlusion boundaries. Dense

depth maps are therefore needed which is why we use [37]

to inpaint the missing data in the raw depth maps.

4.2. Evaluation metrics

4.2.1 Evaluation of monocular depth prediction

As for previous work [7, 6, 35], we evaluate the monoc-

ular depth predictions using the following metrics: Root

Mean Squared linear Error (Rlin), mean absolute relative

error (rel), mean log10 error (log10), Root Mean Squared

log Error (Rlog), and the accuracy under threshold (σi <
1.25i, i = 1, 2, 3).

4.2.2 Evaluation of occlusion boundary accuracy

Following the work of Koch et al. [34], we evaluate the ac-

curacy of occlusion boundaries (OB) using the proposed

depth boundary errors, which evaluate the accuracy ǫa
and completion ǫc of predicted occlusion boundaries. The

boundaries are first extracted using a Canny edge detec-

tor [3] with predefined thresholds on a normalized predicted

depth image. As illustrated in Fig. 8, ǫa is taken as the

average Chamfer distance in pixels [9] from the predicted

boundaries to the ground truth boundaries; ǫcom is taken as

the average Chamfer distance from ground truth boundaries

to the predicted boundaries.

4.3. Evaluation on the NYUv2 Dataset

We evaluate our method by refining the predictions of

different state-of-the-art methods [7, 35, 10, 48, 31, 63].

(a) (b)

Figure 8. Occlusion boundary evaluation metrics based on the

Chamfer distance, as introduced in [34]. The blue lines represent

the ground truth boundaries, the red curve the predicted bound-

ary. Only the boundaries in the green area are taken into account

during the evaluation of accuracy (a), and only the yellow area

are taken into account during the evaluation of completeness (b).

(a) The accuracy is evaluated from the distances of points on the

predicted boundaries to the ground truth boundaries. (b) The com-

pleteness is evaluated from the distances of points on the ground

truth boundaries to the predicted boundaries.

Our network is trained using the 795 labeled NYUv2 depth

images of training dataset with corresponding RGB images

as guidance.

To enable a fair comparison, we evaluate only pixels in-

side the crop defined in [7] for all methods. Table 1 shows

the evaluation of refined predictions of different methods

using our network. With the help of our proposed net-

work, the occlusion boundary accuracy of all methods can

be largely improved, without degrading the global depth es-

timation accuracy. We also show qualitative results of our

refinement method in Fig. 12.

4.4. Evaluation on the iBims Dataset

We applied our method trained on NYUv2 dataset to re-

fine the predictions from various methods [7, 6, 35, 41, 38,

40, 48] on the iBims dataset [34]. Table 2 shows that our

network significantly improves the accuracy and complete-



Depth error (↓) Depth accuracy (↑) OBs (↓)

Method Refine rel log10 Rlin Rlog σ1 σ2 σ3 ǫa ǫc

Eigen et al. [7]
- 0.234 0.095 0.760 0.265 0.612 0.886 0.971 9.936 9.997
X 0.232 0.094 0.758 0.263 0.615 0.889 0.971 2.168 8.173

Laina et al. [35]
- 0.142 0.059 0.510 0.181 0.818 0.955 0.988 4.702 8.982
X 0.140 0.059 0.509 0.180 0.819 0.956 0.989 2.372 7.041

Fu et al. [10]
- 0.131 0.053 0.493 0.174 0.848 0.956 0.984 3.872 8.117
X 0.136 0.054 0.502 0.178 0.844 0.954 0.983 3.001 7.242

Ramamonjisoa - 0.116 0.053 0.448 0.163 0.853 0.970 0.993 3.041 8.692
and Lepetit [48] X 0.117 0.054 0.457 0.165 0.848 0.970 0.993 1.838 6.730

Jiao et al. [31]
- 0.093 0.043 0.356 0.134 0.908 0.981 0.995 8.730 9.864
X 0.092 0.042 0.352 0.132 0.910 0.981 0.995 2.410 8.230

Yin et al. [63]
- 0.112 0.047 0.417 0.144 0.880 0.975 0.994 1.854 7.188
X 0.112 0.047 0.419 0.144 0.879 0.975 0.994 1.762 6.307

Table 1. Evaluation of our method on the output of several state-of-the-art methods on NYUv2. Our method significantly improves the

occlusion boundaries metrics ǫa and ǫc without degrading the other metrics related to the overall depth accuracy. These results were

computed using available depth maps predictions (apart from Jiao et al. [31] who sent us their predictions) within the image region

proposed in [7]. (↓: Lower is better; ↑: Higher is better).

ness metrics for the occluding boundaries of all predictions

on this dataset as well.

4.5. Comparison with Other Methods

To demonstrate the efficiency of our proposed method,

we compare our method with existing filtering methods [54,

20, 2, 57]. We use the prediction of [7] as input, and

compare the accuracy of depth estimation and occlusion

boundaries of each method. Note that for the filters with

hyper-parameters, we tested each filter with a series of

hyper-parameters and select the best refined results. For the

Fast Bilateral Solver (FBS) [2] and the Deep Guided Filter

(GF) [57], we use their default settings from the official im-

plementation. We keep the same network with and without

Deep GF, and train both times with the same learning rate

and data augmentation.

As shown in Table 3, our method achieves the best ac-

curacy for occlusion boundaries. Finally, we compare our

method against the additive residual prediction method dis-

cussed in 3.1. We keep the same U-Net architecture, but

replace the displacement operation with an addition as de-

scribed in Eq. (2), and show that we obtain better results.

We argue that the performance of the deep guided filter and

additive residual are lower due to generated artifacts which

are discussed in Section 3.4. In Table 4, we also com-

pare our network’s computational efficiency against refer-

ence depth estimation and refinement methods.

4.6. Influence of the Loss Function and the Guid­
ance Image

In this section, we report several ablation studies to ana-

lyze the favorable factors of our network in terms of perfor-

mances. Fig. 6 shows the architecture of our baseline net-

work. All the following networks are trained using the same

setting detailed in Section 4.1 and trained on the official 795

RGB-D images of the NYUv2 training set. To evaluate the

effectiveness of our method, we choose the predictions of

[7] as input, but note that the conclusion is still valid with

other MDE methods. Please see supplementary material for

further results.

4.6.1 Loss Functions for Depth Prediction

In Table 5, we show the influence of different loss functions.

We apply the Pytorch official implementation of l1, l2, and

the Huber loss. The Disparity loss supervises the network

with the reciprocal of depth, the target depth ytarget is de-

fined as ytarget = M/yoriginal, where M here represents

the maximum of depth in the scene. As shown in Table 5,

our network trained with l1 loss achieves the best accuracy

for the occlusion boundaries.

4.6.2 Guidance image

We explore the influence of different types of guidance im-

age. The features of guidance images are extracted using

an encoder with the same architecture as the depth encoder,

except that Leaky ReLU [42] activations are all replaced by

standard ReLU [15]. We perform feature fusion of guidance

and depth features using skip connections from the guid-

ance and depth decoder respectively at similar scales.

Table 6 shows the influence of different choices for the

guidance image. The edge images are created by accumu-

lating the detected edges using a series of Canny detector

with different thresholds. As shown in Table 6, using the

original RGB image as guidance achieves the highest accu-

racy, while using the image converted to grayscale achieves



Depth error (↓) Depth accuracy (↑) OB (↓)

Method Refine rel log10 Rlin σ1 σ2 σ3 ǫa ǫc

Eigen et al. [7]
- 0.32 0.17 1.55 0.36 0.65 0.84 9.97 9.99
X 0.32 0.17 1.54 0.37 0.66 0.85 4.83 8.78

Eigen and Fergus - 0.30 0.15 1.38 0.40 0.73 0.88 4.66 8.68
(AlexNet) [6] X 0.30 0.15 1.37 0.41 0.73 0.88 4.10 7.91

Eigen and Fergus - 0.25 0.13 1.26 0.47 0.78 0.93 4.05 8.01
(VGG) [6] X 0.25 0.13 1.25 0.48 0.78 0.93 3.95 7.57

Laina et al. [35]
- 0.26 0.13 1.20 0.50 0.78 0.91 6.19 9.17
X 0.25 0.13 1.18 0.51 0.79 0.91 3.32 7.15

Liu et al. [41]
- 0.30 0.13 1.26 0.48 0.78 0.91 2.42 7.11
X 0.30 0.13 1.26 0.48 0.77 0.91 2.36 7.00

Li et al. [38]
- 0.22 0.11 1.09 0.58 0.85 0.94 3.90 8.17
X 0.22 0.11 1.10 0.58 0.84 0.94 3.43 7.19

Liu et al. [40]
- 0.29 0.17 1.45 0.41 0.70 0.86 4.84 8.86
X 0.29 0.17 1.47 0.40 0.69 0.86 2.78 7.65

Ramamonjisoa - 0.27 0.11 1.08 0.59 0.83 0.93 3.69 7.82
and Lepetit [48] X 0.27 0.11 1.08 0.59 0.83 0.93 2.13 6.33

Table 2. Evaluation of our method on the output of several state-of-the-art methods on iBims.

Depth error (↓) Depth accuracy (↑) OB (↓)

Method rel log10 Rlin Rlog σ1 σ2 σ3 ǫa ǫc

Baseline [7] 0.234 0.095 0.766 0.265 0.610 0.886 0.971 9.926 9.993

Bilateral

Filter [54]

0.236 0.095 0.765 0.265 0.611 0.887 0.971 9.313 9.940

GF [20] 0.237 0.095 0.767 0.265 0.610 0.885 0.971 6.106 9.617

FBS [2] 0.236 0.095 0.765 0.264 0.611 0.887 0.971 5.428 9.454

Deep GF [57] 0.306 0.116 0.917 0.362 0.508 0.823 0.948 4.318 9.597

Residual 0.286 0.132 0.928 0.752 0.508 0.807 0.931 5.757 9.785

Our Method 0.232 0.094 0.757 0.263 0.615 0.889 0.971 2.302 8.347

Table 3. Comparison with existing methods for image enhance-

ment, adapted to the depth map prediction problems. Our method

performs the best for this problem over all the different metrics.

Method SharpNet [48] VNL [63] Deep GF[57] Ours

FPS - GPU 83.2 ± 6.0 32.2± 2.1 70.5 ± 7.5 100.0 ± 7.3

FPS - CPU 2.6 ± 0.0 * 4.0 ± 0.1 5.3 ± 0.15

Table 4. Speed comparison with other reference methods imple-

mented using Pytorch. Those numbers were computed using a

single GTX Titan X and Intel Core i7-5820K CPU. using 320x320

inputs. Runtime statistics are computed over 200 runs.

the lowest accuracy, as information is lost during the con-

version. Using the Canny edge detector can help to alleviate

this problem, as the network achieves better results when

switching from gray image to binary edge maps.

5. Conclusion

We showed that by predicting a displacement field to re-

sample depth maps, we can significantly improve the recon-

struction accuracy and the localization of occlusion bound-

Depth error (↓) Depth accuracy (↑) OB (↓)

Method rel log10 Rlin Rlog σ1 σ2 σ3 ǫa ǫc

Baseline [7] 0.234 0.095 0.766 0.265 0.610 0.886 0.971 9.926 9.993

l1 0.232 0.094 0.758 0.263 0.615 0.889 0.971 2.168 8.173

l2 0.232 0.094 0.757 0.263 0.615 0.889 0.971 2.302 8.347

Huber 0.232 0.095 0.758 0.263 0.615 0.889 0.972 2.225 8.282

Disparity 0.234 0.095 0.761 0.264 0.613 0.888 0.971 2.312 8.353

Table 5. Evaluation of different loss functions for learning the dis-

placement field. The l1 norm yields the best results.

Depth error (↓) Depth accuracy (↑) OB (↓)

Method rel log10 Rlin Rlog σ1 σ2 σ3 ǫa ǫc

Baseline [7] 0.234 0.095 0.760 0.265 0.612 0.886 0.971 9.936 9.997

No guidance 0.236 0.096 0.771 0.268 0.608 0.883 0.969 6.039 9.832
Gray 0.232 0.094 0.757 0.263 0.615 0.889 0.972 2.659 8.681
Binary Edges 0.232 0.094 0.757 0.263 0.615 0.889 0.972 2.466 8.483
RGB 0.232 0.094 0.758 0.263 0.615 0.889 0.971 2.168 8.173

Table 6. Evaluation of different ways of using the input image for

guidance. Simply using the original color image works best.

aries of any existing method for monocular depth predic-

tion. To evaluate our method, we also a new dataset of

precisely labeled occlusion boundaries. Beyond evaluation

of occlusion boundary reconstruction, this dataset should

be extremely valuable for future methods to learn to detect

more precisely occlusion boundaries.
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6. Architecture Details

In Fig. 9, we detail the architecture of our network,

which is composed of two encoders, one for Depth and an

optional one for Guidance. We use a single decoder which

combines the respective outputs of the Depth and Guidance

decoders using residual blocks and skip connections. We

give full details of each block in the following.

Figure 9. Detailed architecture of our displacement field predic-

tion network. Details on the Depth and Guidance encoders are

provided in Sections 6.1 and 6.2 respectively.

6.1. Depth Encoder

Our Depth is a standard encoder with a cascade of

four down-convolutions, denoted D-DownConv. The D-

DownConv blocks are composed of a convolution layer

with 3x3 kernel, followed by a 2x2 MaxPooling, and a

LeakyReLU [42] activation. The D-DownConv block con-

volution layers have respectively [32, 64, 128, 256] chan-

nels. They all use batch-normalization, are initialized using

∗ Authors with equal contribution.

Xavier [14] initialization and a Leaky ReLU [42] activation.

6.2. Guidance Encoder

Our Guidance encoder is composed of a cascade

four of down-convolutions as in [22], which we denote

G-DownConv. It is identical to the D-DownConv block de-

scribed in 6.1 except that it uses simple ReLU [16] activa-

tions. and batch normalization for the convolution layers.

The convolution layers have respectively [32, 64, 128, 256]

channels.

6.3. Displacement Field Decoder

The displacement field decoder is composed of a cascade

of four ResUpConv blocks detailed in Fig 6.3.1, and a con-

volution block OutConv.

6.3.1 ResUpConv

The ResUpConv block is the main component of our de-

coder. It fuses depth and guidance features at multiple

scales using skip connections. The block architecture is de-

tailed in Fig 10. Guidance features are refined using a 3x3

residual convolution layer [22] denoted ResConv3x3. All

blocks use batch-normalization, Leaky ReLU [42] activa-

tion and filters weights are initialized using Xavier initial-

ization.

6.3.2 Output layers

The final output block OutConv is composed of two

Conv3x3 layers with batch-normalization and ReLU [16]

activation, followed by a simple 3x3 convolution layer with-

out batch-normalization nor activation. The number of

channels of those layers are respectively 32, 16, and 2.

Weights are initialized using Xavier initialization.

https://michaelramamonjisoa.github.io/projects/DisplacementFields
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Figure 10. Details of the ResUpConv block used in our displace-

ment field decoder.

7. Qualitative Results

7.1. Comparative Results on 2D Toy Problem

In Fig. 11, we show qualitative results on the 2D Toy

Problem described in Section 3.3 of the main paper. One

can see that residual update introduces severe artifacts

around edges, producing large and spread out errors around

them. Constrastingly, our proposed displacement update re-

covers sharp edges without degrading the rest of the image.

To ensure fair comparison between residual and displace-

ment update methods, identical CNN architectures were

used for this experiment except for the last layer which pre-

dicts a 2-channel output for the displacement field instead

of the 1D-channel output residual.

7.2. Comparative Results on NYUv2 Using
Different MDE Methods

In Fig 12, we show qualitative results of our proposed re-

finement method on different MDE methods [7, 35, 10, 48,

63, 31] evaluated in the main paper. Our method always im-

proves the sharpness of initial depth map prediction, with-

out degrading the global depth reconstruction.

8. More NYUv2-OC++ Samples

In Fig. 13 we show several examples of our manually

annotated 654 images NYUv2-OC++ dataset, which ex-

tends [48]. This dataset is based on the official test split

of the popular NYUv2-Depth [52] depth estimation bench-

mark.

References

[1] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour Detection and Hierarchical Image Segmentation. PAMI,

33(5):898–916, 2011. 3

[2] J.T. Barron and B. Poole. The Fast Bilateral Solver. In

ECCV, 2016. 3, 7, 8

[3] J. Canny. A Computational Approach to Edge Detection.

PAMI, 8(6), 1986. 6

[4] R. Deng, C. Shen, S. Liu, H. Wang, and X. Liu. Learning to

Predict Crisp Boundaries. In ECCV, 2018. 3

[5] Piotr Dollár and C. Lawrence Zitnick. Structured Forests for

Fast Edge Detection. In ICCV, 2013. 3

[6] D. Eigen and R. Fergus. Predicting Depth, Surface Normals

and Semantic Labels with a Common Multi-Scale Convolu-

tional Architecture. In ICCV, 2015. 1, 2, 6, 8

[7] D. Eigen, C. Puhrsch, and R. Fergus. Depth Map Prediction

from a Single Image Using a Multi-Scale Deep Network. In

NIPS, 2014. 1, 2, 6, 7, 8, 10, 14

[8] M. Everingham, L. Van Gool, C.K.I. Williams, J. M. Winn,

and A. Zisserman. The Pascal Visual Object Classes (VOC)

Challenge. IJCV, 88(2):303–338, 2010. 3

[9] H. Fan, H. Su, and L. J. Guibas. A Point Set Generation

Network for 3D Object Reconstruction from a Single Image.

In CVPR, 2017. 6

[10] H. Fu, A. M. Gong, C. Wang, K. Batmanghelich, and D. Tao.

Deep Ordinal Regression Network for Monocular Depth Es-

timation. In CVPR, 2018. 1, 2, 6, 7, 10, 14

[11] P. Fua. Combining Stereo and Monocular Information to

Compute Dense Depth Maps That Preserve Depth Disconti-

nuities. In IJCAI, pages 1292–1298, August 1991. 2

[12] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision

Meets Robotics: the KITTI Dataset. International Journal

of Robotics Research, 2013. 2

[13] D. Geiger, B. Ladendorf, and A. Yuille. Occlusions and

Binocular Stereo. IJCV, 14:211–226, 1995. 2

[14] X. Glorot and Y. Bengio. Understanding the difficulty of

training deep feedforward neural networks. Journal of Ma-

chine Learning Research - Proceedings Track, 9:249–256,

01 2010. 9

[15] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier

Neural Networks. In International Conference on Artificial

Intelligence and Statistics, 2011. 7

[16] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier

Neural Networks. In AISTATS, pages 315–323, 2011. 9

[17] C. Godard, O. Mac Aodha, and G. J. Brostow. Unsupervised

Monocular Depth Estimation with Left-Right Consistency.

In CVPR, 2017. 1, 2

[18] S. Gupta, P. Arbelez, and J. Malik. Perceptual Organization

and Recognition of Indoor Scenes from RGB-D Images. In

CVPR, 2013. 3

[19] S. Gupta, R. Girshick, P. Arbelaez, and J. Malik. Learning

Rich Features from RGB-D Images for Object Detection and

Segmentation. In ECCV, 2014. 3

[20] K. He, J. Sun, and X. Tang. Guided Image Filtering. PAMI,

35:1397–1409, 06 2013. 3, 7, 8

[21] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. In CVPR, 2016. 2

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. In CVPR, pages 770–778, 2016. 9



[23] P. Heise, S. Klose, B. Jensen, and A. Knoll. PM-Huber:

Patchmatch with Huber Regularization for Stereo Matching.

In ICCV, 2013. 2

[24] M. Heo, J. Lee, K.-R. Kim, H.-U. Kim, and C.-S. Kim.

Monocular Depth Estimation Using Whole Strip Masking

and Reliability-Based Refinement. In ECCV, 2018. 2

[25] D. Hoiem, A.A. Efros, and M. Hebert. Recovering Occlusion

Boundaries from an Image. IJCV, 91(3), 2011. 3

[26] D. Hoiem, A. A. Efros, and M. Hebert. Recovering Surface

Layout from an Image. IJCV, 75(1):151–172, October 2007.

3

[27] S.S. Intille and A.F. Bobick. Disparity-Space Images and

Large Occlusion Stereo. In ECCV, 1994. 2

[28] H. Qi J. Dai, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.

Deformable Convolutional Networks. In ICCV, 2017. 4

[29] M. Jaderberg, K. Simonyan, A. Zisserman, and K.

Kavukcuoglu. Spatial Transformer Networks. In NIPS,

2015. 4

[30] J. Jeon and S. Lee. Reconstruction-Based Pairwise Depth

Dataset for Depth Image Enhancement Using CNN. In

ECCV, 2018. 2

[31] J. Jiao, Y. Cao, Y. Song, and R. W. H. Lau. Look Deeper into

Depth: Monocular Depth Estimation with Semantic Booster

and Attention-Driven Loss. In ECCV, 2018. 1, 2, 6, 7, 10,

14

[32] T. Kanade and M. Okutomi. A Stereo Matching Algorithm

with an Adaptative Window: Theory and Experiment. PAMI,

16(9):920–932, September 1994. 2

[33] K. Karsch, Z. Liao, J. Rock, J. T. Barron, and D. Hoiem.

Boundary Cues for 3D Object Shape Recovery. In CVPR,

2013. 1

[34] T. Koch, L. Liebel, F. Fraundorfer, and M. Körner. Evalu-

ation of CNN-Based Single-Image Depth Estimation Meth-

ods. In ECCV, 2018. 2, 3, 6

[35] I. Laina, C. Rupprecht, V. Belagiannis, F. Tombari, and N.

Navab. Deeper Depth Prediction with Fully Convolutional

Residual Networks. In 3DV, 2016. 1, 2, 4, 6, 7, 8, 10, 14

[36] J.-H. Lee and C.-S. Kim. Monocular Depth Estimation Using

Relative Depth Maps. In CVPR, June 2019. 2

[37] A. Levin, D. Lischinski, and Y. Weiss. Colorization Using

Optimization. In ACM Transactions on Graphics, 2004. 6

[38] J. Li, R. Klein, and A. Yao. A Two-Streamed Network for

Estimating Fine-Scaled Depth Maps from Single RGB Im-

ages. In ICCV, 2017. 6, 8

[39] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep Joint

Image Filtering. In ECCV, 2016. 3

[40] C. Liu, J. Yang, D. Ceylan, E. Yumer, and Y. Furukawa.

PlaneNet: Piece-Wise Planar Reconstruction from a Single

RGB Image. In CVPR, 2018. 6, 8

[41] F. Liu, C. Shen, and G. Lin. Deep Convolutional Neural

Fields for Depth Estimation from a Single Image. In CVPR,

2015. 6, 8

[42] A. L. Maas, A. Y. Hannun, and A. Y. Ng. Rectifier Nonlin-

earities Improve Neural Network Acoustic Models. In ICML,

2013. 7, 9

[43] D. Martin, C. Fowlkes, and J Malik. Learning to Detect Nat-

ural Image Boundaries Using Local Brightness, Color and

Texture Cues. PAMI, 26(5), 2004. 3

[44] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database

of Human Segmented Natural Images and Its Application

to Evaluating Segmentation Algorithms and Measuring Eco-

logical Statistics. In ICCV, 2001. 3

[45] B. Owen. A Robust Hybrid of Lasso and Ridge Regression.

Contemp. Math., 443, 2007. 2

[46] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z.

DeVito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Au-

tomatic Differentiation in Pytorch. In NIPS Workshop, 2017.

5

[47] M. Poggi, A. F. Tosi, and S. Mattoccia. Learning Monocu-

lar Depth Estimation with Unsupervised Trinocular Assump-

tions. In 3DV, pages 324–333, 2018. 1

[48] M. Ramamonjisoa and V. Lepetit. Sharpnet: Fast and Ac-

curate Recovery of Occluding Contours in Monocular Depth

Estimation. In ICCV Workshop, 2019. 1, 2, 3, 5, 6, 7, 8, 10,

14

[49] X. Ren and L. Bo. Discriminatively Trained Sparse Code

Gradients for Contour Detection. In NIPS, 2012. 3

[50] X. Ren, C.C. Fowlkes, and J. Malik. Figure/ground Assign-

ment in Natural Images. In ECCV, 2006. 3

[51] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convo-

lutional Networks for Biomedical Image Segmentation. In

MICCAI, 2015. 2

[52] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

Segmentation and Support Inference from RGBD Images. In

ECCV, 2012. 2, 3, 5, 10, 14, 15

[53] R. Szeliski and R. Weiss. Robust Shape Recovery from Oc-

cluding Contours Using a Linear Smoother. IJCV, 28(1):27–

44, 1998. 1

[54] C. Tomasi and R. Manduchi. Bilateral Filtering for Gray and

Color Images. In ICCV, 1998. 7, 8

[55] P. Wang, X. Shen, B. Russell, S. Cohen, B. Price, and A. L.

Yuille. SURGE: Surface Regularized Geometry Estimation

from a Single Image. In NIPS, 2016. 2

[56] P. Wang and A. Yuille. DOC: Deep Occlusion Estimation

from a Single Image. In ECCV, 2016. 3

[57] H. Wu, S. Zheng, J. Zhang, and K. Huang. Fast End-To-End

Trainable Guided Filter. In CVPR, 2018. 3, 7, 8

[58] J. Xie, R. B. Girshick, and A. Farhadi. Deep3D: Fully Auto-

matic 2D-To-3d Video Conversion with Deep Convolutional

Neural Networks. In ECCV, 2016. 1

[59] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe. Multi-

Scale Continuous CRFs as Sequential Deep Networks for

Monocular Depth Estimation. In CVPR, 2017. 3

[60] D. Xu, E. Ricci, W. Ouyang, X. Wang, and N. Sebe. Monoc-

ular Depth Estimation Using Multi-Scale Continuous CRFs

as Sequential Deep Networks. PAMI, 2018. 3

[61] Z. Yang, P. Wang, Y. Wang, W. Xu, and R. Nevatia. LEGO:

Learning Edge with Geometry All at Once by Watching

Videos. In CVPR, 2018. 2

[62] Z. Yang, W. Xu, L. Zhao, and R. Nevatia. Unsupervised

Learning of Geometry from Videos with Edge-Aware Depth-

Normal Consistency. In AAAI, 2018. 2

[63] W. Yin, Y. Liu, C. Shen, and Y. Yan. Enforcing Geometric

Constraints of Virtual Normal for Depth Prediction. In ICCV,

2019. 6, 7, 8, 10, 14



[64] Z. Zhang, Z. Cui, C. Xu, Y. Yan, N. Sebe, and J. Yang.

Pattern-Affinitive Propagation Across Depth, Surface Nor-

mal and Semantic Segmentation. In CVPR, 2019. 2

[65] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid Scene

Parsing Network. In CVPR, 2017. 5

[66] L. Zwald and S. Lambert-Lacroix. The Berhu Penalty and

the Grouped Effect. 2012. 2



1-a

1-b

2-a

2-b

3-a

3-b

Figure 11. Comparison between residual and displacement learning on a toy image sharpening problem for three examples. A blurred

input image Ĩ is fed through a Convolutional Neural Network which learns to reconstruct the original clean image I . Lines (1,2,3)-a show

from left to right: the input image, samples of the dense predicted displacement field, refinement result with displacement update, error

map. Lines (1,2,3)-b show, from left to right: the ground truth image, the predicted residual (blue is negative, red is positive, white is

zero), refinement result with residual update, error map. While introducing artifacts, residual learning also results in a spread out error map

around edges.
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Figure 12. Refinement results using our method (best seen in color). Each example is represented on two rows, first row being the original

predicted depth and second row being the refined depth. First column shows the RGB input images and associated ground truth depth from

NYUv2 [52]. Following columns are refinement results for different methods we evaluated.



Figure 13. Samples taken from our fine-grained manually annotated NYUv2-OC++, which add occlusion boundaries to the popular

NYUv2-Depth [52] benchmark. We annotated the full official 654 images test set of NYUv2-Depth.


