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Figure 1: Adding a virtual character into a postcard. (a) The original image is partially hidden by a finger, which casts a shadow on it. (b) The
picture of a woman has been added. It is correctly shaded and her feet are not shown since they would have been hidden by the finger, had
she appeared in the original postcard. (c) What the postcard would have looked like if its middle part had been white. This can be viewed as
diminished reality. Note that the shadow cast by the finger is correctly modeled. This figure, as well as most of the others, is best viewed in color.

ABSTRACT

We present a non-rigid registration technique that achieves spatial,
photometric, and visibility accuracy. It lets us photo-realistically
augment 3D deformable surfaces under complex illumination con-
ditions and in spite of severe occlusions. There are many ap-
proaches that address some of these issues but very few that si-
multaneously handle all of them as we do.

We use triangulated meshes to model the geometry and introduce
explicit visibility maps as well as separate illumination parameters
for each mesh vertex. We cast our registration problem in an Ex-
pectation Maximization framework that allows robust and fully au-
tomated operation. It provides explicit illumination and occlusion
models that can be used for rendering purposes.
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1 INTRODUCTION

In recent years, there has been growing interest in modeling generic
deformable surfaces from video sequences [3, 2, 11, 6, 19, 16]. For
Augmented Reality purposes, it allows retexturing of the surfaces,
which involves changing their appearance while preserving their
shape, as shown in Fig. 1.

However, current methods suffer from a number of limitations.
Some require markers [3] or large training databases [6]. Others
lack accuracy [11] or artificially limit the number of the colors on
the surface [19, 16] or the number of light sources [18].

In this paper, we propose a method that overcomes these limita-
tions and allows automated retexturing under complex illumination
conditions and in the presence of occlusions. Our technique starts
from a set of wide baseline correspondences between a model im-
age of the undeformed surface and the current image we are trying
to retexture to obtain initial 3D pose and shape estimates. These
estimates are then refined together with visibility and lighting maps
by matching the texture in the model image against that of the input
image.

Our approach is inspired by standard template matching ap-
proaches [10, 1], although we explicitely model occlusions and lo-
cal illumination parameters, which gives us both additional robust-
ness and increased realism when synthesizing the new textures. Our
only requirement is that the real surface we are trying to model is
textured enough to establish the initial correspondences.

More specifically, the visibility map we use defines whether or
not a pixel in the model image is visible or hidden in the input
one. The lighting map includes separate illumination parameters
for each vertex of the meshes we use to represent the surfaces. It
accounts for the fact that illumination may vary across the surface in
unpredictable ways, with the only assumption that these variations
are piecewise smooth. Our algorithm can therefore handle much
more complex combinations of occlusion and lighting patterns than
state-of-the-art methods, such as the recent approach [5] that pro-
poses an elegant EM framework to impose the spatial coherence
of occlusions. Of course, this flexibility comes at a cost since it
makes estimating the shape, illumination, and visibility parameters
a potentially ill-conditioned optimization problem with many local
minima. The main technical contribution of this paper is therefore
an optimization scheme that provides stable and realistic solutions.
This allows fully automated operation without manual initializa-



tion to produce Augmented Reality results such as those depicted
by Fig. 1.

2 RELATED WORK

Effective 3D deformable surface modeling for Augmented Reality
purposes must include accurate geometric reconstruction, recovery
of the illumination parameters to correctly relight the objects to be
added, and correct handling of both self-occlusions and other ob-
jects that may hide parts of the surface. As will be discussed in
this section, there are many approaches that address some of these
issues but very few that handle all of them as we do.

2.1 Non-Rigid Registration

There are two major approaches to registration of non-rigid sur-
faces. The first relies on image feature matching and can be fully
automated [12, 7]. The second involves direct minimization of
pixel intensity differences. It tends to be more precise than the
former but requires good initial estimates to avoid getting trapped
in local minima. It is therefore often restricted to frame-to-frame
tracking [1], or used in conjunction with very specific deforma-
tion models [4, 13]. This requirement can be relaxed for near-
regular textures [9], or when there are only a few colors on the
surface [19, 16]. However, this lacks generality.
This is why we chose to combine the best of both worlds by

initializing the registration process using wide-baseline matching
of feature points [7] and then refining the initial estimates using
pixel level minimization. The initialization step does not require
illumination or occlusion modeling but is sufficiently accurate to
bootstrap it. It also frees us from the need of a training database,
which will not be available in general.

2.2 Illumination Models

For our application, we require not only robustness to illumina-
tion changes but actual retrieval of illumination parameters for ren-
dering purposes. Image warping approaches have long incorpo-
rated polynomial [17] or spline [16] illumination models. Simi-
larly, [5] allows for an affine illumination change. However, none
of these models includes enough parameters to represent truly com-
plex lighting effects, such as those caused by arbitrary objects cast-
ing shadows as shown in Fig. 1.
Active appearance models [4, 6] and morphable models [13]

incorporate more powerful illumination models, which have been
learned by performing Principal Component Analysis (PCA) on a
training set of views of the target objects under different lighting
conditions. This is effective for face tracking because light often
comes more or less from above, faces are usually oriented verti-
cally, and strong shadow patterns are uncommon. Thus, using face
image databases and PCA to reduce the dimensionality of the illu-
mination space makes perfect sense but is not generally applicable,
especially when no training database is available.
By contrast, our approach incorporates very flexible illumina-

tion models— those used in this paper have around 600 parame-
ters, in contrast to the 20 or so typically used by active appearance
models—that can handle complex shading patterns without prior
training. This makes a significant difference in the complexity of
the problem we face. Allowing more degrees of freedom for irradi-
ance estimation results in many more local minima in the objective
function we minimize because image intensity differences between
model and input images can be reduced by changing either the light-
ing or shape parameters.

2.3 Retrieving Occlusion Masks

A standard approach to deal with occlusions is based on robust es-
timators that decrease the influence of large error terms [1]. For
example, in [6], robust estimation is implemented efficiently in the
inverse compositional algorithm in which the Hessian matrices are

pre-computed. This is achieved by assuming spatially coherent oc-
clusions, computing the visibility of individual mesh facets, and
using them to assemble the matrices.

Note, however, that straightforward robust estimation will not
perform well in the presence of strong illumination effects without
explicitly taking them into account. Furthermore, as is the case of
illumination modeling discussed above, we need not only robust-
ness to occlusions but also explicit models of their locations for
rendering purposes, as shown in Fig. 1. In [5], an elegant frame-
work is introduced for imposing the spatial coherence of occlusions
by means of an EM algorithm. Its implementation, however, relies
on a simple pixel-wise measure to predict occlusions. This is not
sufficient when used in conjunction with an illumination model as
flexible as ours because occluded model image pixels can be made
to look very similar to pixels in the input image by simply varying
the illumination parameters. As discussed below, we address this
issue by estimating pixel visibility using whole neighborhoods as
opposed to individual pixels.

3 BASIC SHAPE AND ILLUMINATION RECOVERY

We next introduce our generative model and show how we use it to
retrieve surface shape and illumination parameters without consid-
ering occlusions. Those will be introduced in the following subsec-
tion by incorporating this generative model into an EM framework.

3.1 Generative Model

As discussed earlier, we assume we are given a model image in
which the surface is not deformed and lit by diffuse lighting. Our
goal is to match it against an input image in which the surface is
both deformed and subjected to complex illumination effects.

To this end, we represent the surface as 3D triangular meshes
whose geometry is controlled by a vector θ of 6 global orientation
parameters and 20 shape parameters. Following the approach intro-
duced in [15] the shape parameters are taken to be weights assigned
to deformation modes that were computed by performing PCA on a
database of deformed versions of the mesh. Given θ and the model
image, we can synthesize Sθ , the image we would see if the surface
had been acquired with an identical geometry, but under constant
diffuse lighting.

To account for the fact that each part of the mesh may receive
different amounts of light, we introduce Λ, a vector that contains
one lighting factor per vertex and an offset s that is common to
all vertices and arises from different camera settings. It is used to
generate a second synthetic image Sθ ,Λ as follows. For a pixel x
belonging to a facet whose vertices have lighting factors Λa, Λb

and Λc, we take the Sθ ,Λ(x) the gray level of x to be

Sθ ,Λ(x) = Sθ (x)(βaΛa +βbΛb +βcΛc)+ s , (1)

where βa, βb and βc are the barycentric coordinates of x with re-
spect to the three vertices. For any given value of θ , by represent-
ing all pixel values in a column vector, this can be written in matrix
form as

Sθ ,Λ = Bθ Λ . (2)

This formulation gives us the flexibility required to handle arbi-
trary shading patterns whose shape cannot be predicted in advance.
When working with color images, we use the same formalism but
introduce a different lighting factor for each color band.



3.2 MAP Estimation

Estimating the shape and illumination parameters in an input image
I amounts to estimating

(θ̂ , Λ̂) = argmax
θ ,Λ

P(θ ,Λ | I) ,

= argmax
θ ,Λ

P(I | θ ,Λ)P(θ ,Λ) , (3)

= argmax
θ ,Λ

P(I | θ ,Λ)P(θ)P(Λ) ,

where the second line of the equation follows from Bayes’ rule and
the third from assuming independence between the surface shape
parameterized by θ and the illumination factors Λ. This is not
strictly true because illumination depends on surface orientation.
However, it is a reasonable assumption for our purposes since we
usually deal with ambient diffuse lighting and because illumina-
tion effects which are shape independent, such as the shadows of
Fig. 5(a), tend to be dominant.

To enforce the fact that the surface we model does not stretch or
shrink, we take P(θ) to be

P(θ) ∝ exp(−ED) (4)

ED(θ) =
V

∑
i=1

∑
v j∈N (vi)

(
∥∥vi − v j

∥∥−Li, j)
2 ,

where vi is a vertex of the mesh deformed by θ , N (vi) represents
the set of all its neighbors, and Li, j is the distance between vi and
v j in the undeformed mesh.

We model the piecewise smooth nature of illumination by penal-
izing large second derivatives in the spatial values of the lighting
factors. We write

P(Λ) ∝ exp(−EΛ) ,

EΛ = ∑
(a,b,c)∈A

(−Λa +2Λb −Λc)
2 , (5)

= ‖KΛ‖2 ,

where A is the set of aligned, connected, and equidistant vertice
triplets in the base mesh and K is a large but very sparse matrix.

Finally, we take P(I | θ ,Λ) to simply be

P(I | θ ,Λ) ∝ exp(−EI) , (6)

EI =
∥∥I −Sθ ,Λ

∥∥2 ,

which amounts to saying that once the gray levels of the input image
pixels are explained in terms of the model, only independent pixel
noise remains.

3.3 Optimization Framework

Given the expressions of P(I | θ ,Λ), P(Λ), and P(θ) introduced
above, finding the MAP estimate of Eq. 3 is equivalent to solving
the least-squares problem

(θ̂ , Λ̂) = argmin
θ ,Λ

∥∥I −Sθ ,Λ
∥∥2+‖KΛ‖2+ED(θ) . (7)

In practice, we automatically initialize θ using a set of corre-
spondences between the model and input images using a wide base-
line matching technique, as in [7]. We then alternatively and iter-
atively solve over Λ and over θ . The latter is standard Levenberg-
Marquardt while the former is achieved by solving the linear system

argmin
Λ

=
∥∥I −Sθ ,Λ

∥∥2+‖KΛ‖2

= ‖I −Bθ Λ‖2+‖KΛ‖2 (8)

=

∥∥∥∥

[
Bθ
K

]
Λ−

[
I
0

]∥∥∥∥
2

where Bθ comes form Eq. 2, which accounts for the lighting factors
of Eq. 1. Observe that since Λ can be solved in closed form, no
initial estimate is required.

4 HANDLING OCCLUSIONS

The method introduced in Section 3 is effective in the absence of
occlusions. Here we extend it so that it also works in their presence,
not only to achieve robustness but also to compute precise occlusion
masks that can be used to augment only the visible parts of the
surface and ignore the others, as shown in Figs. 1 and 2.
To this end, we take advantage the EM framework introduced

in [5] to estimate visibility while imposing spatial coherence of the
occlusion masks, something that standard robust estimation does
not do. However, its original implementation only has global illu-
mination parameters and does not account for local lighting effects,
such as shadows, which our generative model does. This poten-
tially creates many ambiguities since occlusions and shadows often
have similar effects on pixel intensities. We have therefore replaced
the very local similarity measures used in [5] by more global ones
that involve whole neighborhoods. As a result, our approach can
disambiguate local shadows from occlusions.
In the remainder of this section, we briefly summarize the EM

approach of [5] and discuss its limitations. We then show how they
can be overcome by replacing the local measures it relies on by
more global ones.

4.1 Visibility Maps

The starting point of [5] is to rewrite Eq. 3 as

(θ̂ , Λ̂) = argmax
θ ,Λ

∑
ν

P(I,ν | θ ,Λ)P(θ)P(Λ) , (9)

where ν is a binary visibility map that signals if individual pixels
lie on the target surface or are occluded. Spatial coherence of the
occlusions is enforced by assigning to visibility maps a prior prob-
ability term P(ν) that is inversely proportional to the number of
transitions between visible and occluded pixels.
Solving Eq. 9 implies evaluating a sum over all possible maps,

and direct maximisation is infeasible. Instead, a mean-field
expectation-maximization algorithm is used.
The E-step estimates a probability of visibility b(x) for each

pixel. In order to enforce spatial consistency, the optimal set of
such probabilities must satisfy the set of coupled non-linear equa-
tions

b(x) = σ

(
2

T
∑

y∈Γ(x)

(2b(y)−1)+ log
f (x)Pf

g(x)Pg

)
, (10)

where Γ(x) denotes the 4-neighborhood of x, σ(x) = 1/(1 +
exp(−x)) is the sigmoid function, T is a parameter that controls
the amount of regularization, Pf is the prior probability of visibil-
ity, and Pg = 1−Pf . The f (.) and g(.) functions approximate the
probability of pixels being either visible or occluded given their
individual gray levels. In our case, we implemented the original
approach [5] by defining f and g as

f (x) = G(I(x),Sθ ,Λ(x),σ2) (11)

g(x) = 1/256
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Figure 2: Adding a virtual logo. (a) The model image. (b) An input image showing the model partially occluded by a set of keys and shaded by
a complex lighting environment. (c) The input image is augmented with an EPFL logo on top of which the keys remain visible. (d) Diminished
reality version of the surface in which the original texture has been replaced by a shaded version of the surface, assumed to be featureless. The
small holes in the upper right corner correspond to pixels that have been erroneously labeled as occluded because they were specular.

where G is a Gaussian centered on Sθ ,Λ(x) with a variance of σ 2.
The system of Eq. 10 is then solved by iterative re-substitution.
The M-step updates the model parameters taking b(x) as ex-

pected visibility. In our case, this amounts to using them to weight
the terms of eq 7. It can therefore be formulated as finding

(θ̌ , Λ̌) = argmin
θ ,Λ

∥∥MI −MSθ ,Λ
∥∥2+‖KΛ‖2+ED(θ) , (12)

where M is a diagonal matrix composed of all the b(x) values.
The model as described above assumes conditional indepen-

dence of pixel gray levels given the model parameters. While this
may be reasonable for visible pixels that are correctly explained by
the model so that only iid noise remains, this is certainly not true for
occluded pixels that are not explained at all by the model. Further-
more, in the presence of complex illumination patterns, observing
individual pixel intensities is not a discriminating enough criterion
to assess visibility. If the current estimate of theΛ lighting factors is
inaccurate over a local area, the individual residuals might be larger
than they should and the pixels erroneously labeled as occluded.
Conversely, when an occluded object has approximately the same
color as the target surface or when local illumination tasks the color
of the occluding object, occluded pixels can easily be missed.

4.2 Visibility and Normalized Cross-Correlation

Our goal is to alleviate the problems discussed above by improv-
ing the robustness of the visibility update equations of Eq. 10 to
local illumination changes, so that potential inaccuracies during the
M-step do not result in poor visibility estimates during the E-step.
Our proposed solution is to replace the f function of Eq. 11 by a
more robust one, which we will denote as d and takes into account
neighborhoods as opposed to individual pixels.
To define d, let us first introduce the visibility weighted normal-

ized cross-correlation between two vectors A and B

γ(A,B,w) =
∑i wi

(
Ai −A

)(
Bi −B

)
√

∑i wi

(
Ai −A

)2∑i wi

(
Bi −B

)2
(13)

where w is a set of weights, and A and B denote the averages
weighted by w over A and B respectively. Let Wx be a neighbor-
hood around x that does not include x. As a shortcut, we write the
vector of pixel intensities withinWx as:

I(Wx) = [I(y)|y ∈Wx]

and we define Sθ ,Λ(Wx) and b(Wx) similarly. Likewise, we write

[1−b(Wx)] = [1−b(y)|y ∈Wx] .

Finally, let

c(Wx,b(Wx)) = R max
(
0,γ
(
Sθ ,Λ(Wx), I(Wx),b(Wx)

))

R = exp



−σc

(
Sθ ,Λ(Wx)

I(Wx)
−1

)2



where σc is a weighting constant. In practice, c(Wx,b(Wx)) tends
to be close to 0 for occluded pixels and to 1 when model and in-
put pixels match up to an affine transformation of their intensities,
even if the precise lighting parameters are unknown. The term R
penalizes a too large average difference. The b(Wx) term prevents
the correlation windowWx from crossing a visibility boundary.
Figure 3 shows a case where the b(y) in x neighbordhood are bi-

nary. The part where the b(y) = 1 is a window over the visible area,
while the rest is occluded. The two correlation values c(Wx,b(Wx))
and c(Wx, [1−b(Wx)]) are expected to take a value close to 1 and
0 respectively, and are two possible clues for the d(x,b(Wx)) func-
tion we want to design. However, d(x,b(Wx)) is not function of
b(x), since x /∈Wx. To decide on which side x lies and to choose the
correct value, we take the correlation measure which is the most
compatible with x and define d as

d(x,b(Wx)) =

{
c(Wx,b(Wx)) if δ+ < δ−

c(Wx,1−b(Wx)) otherwise
(14)

where

δ+ = (c(Wx,b(Wx))− c(Wx ∪ x, [b(Wx),1])
2

δ− = (c(Wx,1−b(Wx))− c(Wx ∪ x, [1−b(Wx),1])
2

We can now rewrite the visibility update equation of Eq. 10 as

b(x) = σ

(
2

T
∑

y∈Γ(x)

(2b(y)−1)+ log
d (x,b(Wx)) f (I(x))Pf

g(I(x))Pg

)
.

(15)
Solving this system using iterative re-substitution quickly con-

verges to a sharp probability field with clearly defined visibility
boundaries. Color images are handled by computing d(.) for each
channel and by multiplying them together. Compared to Eq. 10,
Eq. 15 is more robust to illumination estimation errors.
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Figure 3: Correlation windows to compute correlation at pixel x.

5 IMPLEMENTATION ISSUES

The results shown in this paper were obtained using 1092× 728
images and we used a correlation window of size 11×11 to perform
the visibility computations of Section 4.2. We take Pf to be 0.9 and
T to be 0.5 when computing the b(x) probabilities of visibility by
solving the coupled system of Eq. 10.

Our current implementation focuses on accuracy rather than
speed. We did not spend much effort on computation efficiency:
Processing an image takes 6 to 7 minutes on a modern PC. This
could however be sped-up by several orders of magnitude as fol-
lows.

Jacobian precomputation The most time consuming part is
the geometric registration of Section 3.3, in which a synthetic im-
age Sθ is iteratively rendered to minimize its difference with the
input image I. This registration is slow because we use straightfor-
ward Levenberg-Marquardt to minimize, every iteration of which
requires a costly recomputing of the Jacobian. This computation
burden could be reduced by using faster template matching tech-
niques [1, 8]. These precompute directions in which to perform the
line search given residuals. According to [1], this is at least one
order of magnitude faster.

GPU vs CPU The synthetic image Sθ and its spatial deriva-
tive is obtained by linearly interpolating two pyramid levels that are
sampled with bicubic interpolation. Although it requires 32 texture
access for every pixel rendered, this rendering ensures image gra-
dient continuity thanks to bicubic interpolation properties. The tex-
ture pyramid avoids sampling artifacts, and a continuous gradient
helps the Levenberg-Marquardt algorithm to converge. Our current
implementation only uses the CPU. Using the GPU instead could
massively accelerate rendering and gradient computation. The ded-
icated and parallel nature of graphic hardware would provide an
acceleration of at least one order of magnitude.

Constrained optimization Geometric constraints of Eq. 5
could be imposed during minimization by first determining the lin-
ear subspace locally satisfying them, and then performing within
that subspace a Newton or Levenberg-Marquardt step minimizing
the pixels’ sum of square difference. This would improve algo-
rithm’s convergence properties and reduce the required number of
iterations by a factor of at least two, according to our initial experi-
ments.

Integral images The weighted cross-correlation of Eq. 13 can
be computed with a complexity linear with the number of pixels
and independent of the window size. Rearranging Eq. 13 gives:

∑(wiAiBi)−B∑wiAi −A∑wiBi +AB∑wi√
∑wiA

2
i −2A∑wiAi +A

2∑wi

√
∑wiB

2
i −2B∑wiBi +B

2∑wi

.

(16)

Computing a sum over a rectangular area from an integral image
takes a constant constant time. Thus, reducing the complexity of the
above formula to constant time only requires to compute integral
images of the following 8 images: A, B, w, wA, wB, wAB, wA2,
and wB2. Computing at the same time γ(A,B,1−w) only requires
3 additional integral images: A2, B2 and AB. According to our
preliminary tests, this implementation is about 15 times faster than
our original one.

Combining all these improvements could potentially yield a
speed increase of several orders of magnitude, which would lead
to a frame rate of a few Herz on our 1092× 728 images, or even
faster using smaller images or parallel architectures that are now
becoming common. Such an optimized implementation could then
be used for interactive Augmented Reality.

6 RESULTS

Our approach requires a model image in which the surface appears
undeformed and a parametric model of its potential deformations.
To validate it, we used the color postcards of Fig. 1 and 2 that we
scanned to produce well-textured model images with homogeneous
illumination. We represent the postcards as textured 600-vertex
rectangular meshes associated with deformation modes we com-
pute using the technique described in [14]. We use these models
to demonstrate the robustness of our approach to occlusions and
illumination changes.

6.1 Occlusion Handling

Figs. 1(b), 2(c), 4(b) demonstrate the importance of the occlusion
mask to only render additional objects where they are expected to
be visible, which is critical for augmentation purposes. In Fig. 1(c),
we render the pixels that have been labeled as occluded using the
original image texture and the others using the illumination model.

Note that the shape of the occluding finger is recovered almost
everywhere to a ±1 pixel accuracy. In Fig. 5, we compare our visi-
bility map to the one we obtain when we use the original approach
of [5] as described in Section 4.1, which turns out be much less
reliable.

In our experience, these results are typical. Errors may occur
when a large uniform surface occludes a uniform one of a similar
color. Our method can also misclassify pixels that are subject to
phenomena that the generative model of Section 3 does not take
into account, such as motion blur, defocus, or specular reflections.
The latter is what produces the tiny holes in the visibility map of
Fig. 2. However, such mistakes are not frequent enough to prevent
realistic augmentation. In fact, as shown in Fig. 6, our technique
can even be used to remove limited motion blur from video images.
Including explicit motion blur modeling into our generative model
should allow us to handle far more.

6.2 Illumination Handling

To demonstrate our algorithm’s ability to simultaneously handle
changing lighting conditions and surface deformations, we acquired
a video sequence of the postcard of Fig. 1 lit by both daylight com-
ing through a window and an incandescent light nearby. In that
configuration, simply rotating the postcard towards the window or
the lamp changes the illuminant color. As shown in Fig. 7, the al-
gorithm nevertheless continues to return accurate deformation and
illumination parameters that are sufficiently accurate to realistically
embed the virtual character into the original texture, even though a
hand casts a shadow across the surface.

In this section we have decoupled the presentation of visibility
computation and lighting parameters estimation. Nevertheless, as
shown in Fig. 8, the two are intimately coupled. It is because we can
compute good visibility masks that we can also recover meaningful
illumination parameters.



(a) (b)

(c)

Figure 4: Handling a large occlusion. (a) The postcard of Fig. 1 is occluded by several fingers. (b) The diminished reality version of the postcard.
(c) A detail of the augmented postcard. The visibility map is computed accurately enough so that rendering the virtual character under the finger
appears realistic.

(a) (b)

Figure 5: (a) The visibility map of Fig. 1 computed using the original technique of [5] (b) Visibility map as computed by the algorithm of section
4.2.



(a) (b)

Figure 6: Removing motion blur. (a) Input image from a video sequence of the deforming postcard, with some motion blur and a complex shadow.
(b) The model image is warped using the recovered motion and illumination parameters. The motion blur has disappeared, which is particularly
visible on the tree, while the shadows are correctly reproduced.

Figure 7: Simultaneously handling changing illumination, cast shadows, and surface deformations. The postcard of Fig. 1 is lit by both daylight
and incandescent light while being rotated and deformed. The virtual character still blends smoothly into the real postcard even though the
changes in orientation results in a change of lighting color and a hand casts a shadow on the surface.



(a) (b)

Figure 8: Interplay of the visibility computation and recovery of the illumination parameters. (a) Image synthesized by warping the model image
of Fig. 1 using the pose and illumination parameters recovered from the image of Fig. 4(a) using our complete method. (b) The model image
is warped using the same geometric pose. However, occlusion detection has been switched off and the recovered illumination parameters are
corrupted by the occluding fingers, which results in an unrealistic rendering.

7 CONCLUSION

We have proposed a method for registering deformable surfaces that
is robust both to occlusions and complex illumination effects. It
returns a lighting model that can be used to relight the objects to be
added to the scene and a visibility map that lets us draw them only
at appropriate locations. The key components of our approach are
a lighting model that is flexible enough to handle arbitrary lighting
patterns and an algorithm for visibility estimation that takes into
account whole neighborhoods instead of individual pixels.

One weakness of the current approach is that it requires rela-
tively textured surfaces to produce accurate results. However, since
we recover local illumination models, we should be able to take ad-
vantage of shading information in untextured parts of the surface,
thereby increasing the range of applicability of our method. This
will be the subject of future work.
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