
69

∗

†

ABSTRACT

We propose a fully automated approach to calibrating multiple cam-
eras whose fields of view may not all overlap. Our technique only
requires waving an arbitrary textured planar pattern in front of the
cameras, which is the onlymanual intervention that is required. The
pattern is then automatically detected in the frames where it is visi-
ble and used to simultaneously recover geometric and photometric
camera calibration parameters.
In other words, even a novice user can use our system to extract

all the information required to add virtual 3D objects into the scene
and light them convincingly. This makes it ideal for Augmented
Reality applications and we distribute the code under a GPL license.

1 INTRODUCTION

We propose a simple-to-use camera calibration system that can han-
dle multiple cameras whose fields of view do not necessarily over-
lap. It estimates the geometry of the cameras, their photometric
responses, and an environmental lighting map. The only manual
intervention required involves waving an arbitrarily textured planar
pattern in front of the cameras. In other words, in one single opera-
tion, our system yields all the information required by sophisticated
Augmented Reality applications to draw virtual 3–D objects at the
right locations and then light them convincingly, as shown in Fig. 1.
In the remainder of the paper we will refer to the recovery of

geometric properties as geometric calibration and the estimation
of photometric responses and lighting parameters as photometric
calibration. Since geometric camera calibration is now very well
understood from a theoretical point of view [9], there are of course
a number of practical techniques, including some commercial sys-
tems that are powerful but expensive. Most rely on retro-reflective

∗This work was supported in part by the Swiss National Science Foun-

dation
†Contact author. E-mail:julien.pilet@epfl.ch

targets [20] or laser pointers [18] that can be shown to the camera or
cameras. However, these approaches require adjusting the shutter
speed or camera aperture, which prevents simultaneous geometric
and photometric calibration.

Our approach extends earlier methods [17, 21], whose imple-
mentation is now available in OpenCV [15]. They rely on a printed
grid that is shown to the camera. However, the grid detection is
less reliable than using markers [5]. By contrast, our method is
more flexible since it works with any planar textured surface. Fur-
thermore, unlike ours, these methods neither handle extrinsic cali-
bration of non-overlapping fields of view nor any photometric in-
formation. A method that calibrates multiple camera is presented
in [19]. It also recovers the relative poses of multiple cameras but
requires each camera to see all calibration target positions, which,
in practice, is a very severe limitation.

In our system, the user only has to move the calibration pattern in
front of the cameras. We use a powerful computer vision technique
to detect it in the images [12] both robustly and in real-time. This
provides homographies between the pattern and the images, which
are then used to compute the intrinsic camera parameters as in [21,
17]. However, unlike these earlier approaches, we also use them
to compute the poses of the cameras with respect to each other.
Finally, we rely on the intensity variations within the pattern and
across the images to achieve photometric calibration. Our all-in-
one approach includes the following contributions that both reduce
the user’s workload and give our system its additional capabilities:

• Fully automated detection of the calibration pattern. Our
approach to detecting the calibration pattern is both real-time
and robust. Furthermore, it automatically selects the frames
that yield the most informative homographies and rejects am-
biguous ones. As a result, it becomes easy to collect large
amounts of calibration data, which in turn yields excellent nu-
merical stability and accuracy without any extra manual inter-
vention.

• Handling one or more cameras with non-overlapping
fields of view. Our system selects the position of the pattern
that is seen by the largest number of cameras to define the
common referential. As depicted by Fig. 2, it then expresses

1-4244-0651-X/06/$20.00 ©2006 IEEE



70

p

p

c

c

c0

0

1

1

2

3c

c3 c0 c1

c2 c3
p1

c0 c1 c2 p0

the pose of the cameras that do not see this position by com-
posing relative displacements between camera pairs. These
are easy to estimate from the homographies and give initial
estimates that are then refined by bundle adjustment.

• Photometric calibration for free. We use the very same
set of images both for geometric and photometric calibration,
which means that no additional user intervention is required to
obtain the latter. We take advantage of the fact that our pattern
effectively samples the space of surface normals to sample an
irradiance map which we deconvolve to render virtual objects
with correct specular reflections and cast shadows, such as
those of Fig. 1(c) and 1(d).

Our system is embedded in a distributed framework that allows
real-time processing of the output of several cameras plugged into
separate but networked computers. To demonstrate its effective-
ness, we distribute the code under a GPL license [1].
In the remainder of the paper, we first compare our approach to

existing calibration techniques. We then introduce the techniques
we use to recover first the geometric camera pose parameters and
then the photometric and illumination ones. Finally, we evaluate
the accuracy of our system and present Augmented Reality results.

2 RELATEDWORK

We review briefly existing approaches to geometric and photomet-
ric calibration, which are usually performed separately. Our ap-
proach is inspired by several of them but performs both simulta-
neously, which makes it easier to use for Augmented Reality pur-
poses.

2.1 Geometric Calibration

Calibration algorithms that do not require an object known a pri-
ori are sometimes called auto-calibration algorithms. They usually
involve a moving camera that is calibrated by simultaneously recov-
ering pose parameters and reconstructing the 3–D structure of the

scene. However, they are not well adapted to computing the relative
positions of multiple cameras. Furthermore, they lack robustness.

We therefore focus here on methods that rely on a calibration
object or pattern because they are much more reliable. Commer-
cially available systems rely on tri-dimensional calibration objects
with retro-reflective markers, spheres, or disks on them, which are
often complex to build and cumbersome. A notable exception are
approaches such as [13] that only involve a moving wand with two
markers on it. However, all methods that depend on retro-reflective
markers require changing the shutter speed to reliably extract the
markers from the images, which prevents simultaneous geometric
and photometric calibration. Similarly, using light patterns emitted
by a laser pointer as in [18] is a very practical approach to geometric
calibration but requires modifying the cameras settings.

Our system falls into the category of recent approaches that rely
on a planar target moved in front of the camera [17, 21]. This is
attractive because such a target can be built by simply printing a
pattern on a sheet of paper. These earlier techniques, however, were
only designed to recover the internal parameters of a single camera.
Here we are also interested in the positions and orientations of the
cameras with respect to each other. The method closest to ours that
we are aware of is presented in [19]. As ours, it provides both the
intrinsic parameters and relative poses of a multi-camera system
using a planar target. However the parameters are estimated via
factorization of a matrix built from homographies between image
pairs. This requires that all the positions of the planar target must be
seen from all the cameras simultaneously. This is a major limitation
that our method does not have.

The papers discussed above focus on the geometric aspects of
the problem, and underplay the pattern detection and the frame se-
lection issues. In practice, the target position is often provided by
hand to perform the experiments, which is inconvenient. [15] uses
a black and white checkerboard as a calibration object to facilitate
the point extraction procedure. However the repetitive nature of the
pattern can easily result in ambiguous poses, and its detection is
known to be error-prone. Here we solve this problem using a state
of the art feature point-based method [11], which can deal with arbi-
trary textures and is reliable enough not to require manual filtering
of misdetections.

2.2 Photometric Calibration

Real-world illumination can be captured using calibration objects
such as reflective spheres. This can be done as a preprocessing
step [3] if the illumination remains unchanged. It can also be done
in real-time [10] using a calibration object built by adding a mirror
ball to a 2–D square marker. While effective, this approach is much
more difficult to deploy than ours since constructing such an ob-
ject is much more involved than simply printing a textured pattern.
Similarly, [16] relies on omni-directional stereo cameras, which re-
quires specialized hardware instead of the ordinary cameras we use.
The photometric calibration we get may not be as accurate as those
obtained with such lighting probes but we will show that it is am-
ply sufficient to synthesize realistic augmented images while being
much more light-weight.

Another class of approaches [4, 6] focuses on interactive ren-
dering of illumination changes caused by virtual objects in the real
scene. However, this typically involves a 3–D scene model, which
is cumbersome to acquire.

Our approach to creating an environmental lighting map is re-
lated to the inverse lighting framework of [14] that involves an ob-
ject of constant albedo and known shape. If the object surface con-
tains a sufficiently large number of differently oriented normals, it
is possible to relate a lighting contribution to each direction of a
discretized lighting sphere. Regularized deconvolution then allows
the estimation of the light sources position. In our case, as the grid



71

moves in front of the cameras, it samples the spaces of normals.
Since we precisely compute those normals, we can directly exploit
the observed changes in pixel intensities to model the illumination
using a very similar approach. This removes the need for a constant
albedo 3–D object and its model.

3 GEOMETRIC CALIBRATION

Our geometric calibration procedure includes several stages. Our
system first computes homographies between the geometric plane
of the target object and its image projections. It then retains the
most reliable ones and the corresponding frames to estimate the in-
trinsic camera parameters and the relative pose of the calibration
object with respect to the cameras in the corresponding frames. In
turn, these poses are used to select a common referential and to
compute the positions and orientations of the cameras with respect
to each other. Finally, our system performs global non-linear min-
imization to refine these estimates. We outline the individual steps
of this process below.

3.1 Computing and Selecting the best Homographies

To compute the homographies between the geometric plane of the
target object and its image projections, we must first detect it in as
many frames as possible. To this end, we use an interest point-based
method that we developed in earlier work [11]. It first performs
real-time matching of interest points extracted from a reference im-
age such as the ones of Fig. 3 against those extracted from input
images acquired at run-time under potentially large perspective and
scale variations. It then uses standard robust estimation techniques
to compute homographies from these matches and selects the best.

3.1.1 Wide-Baseline Matching

We achieve fast and robust wide-baseline matching by formulating
it as a classification problem, which lets us shift much of the com-
putational burden to a training phase. We treat the set of all possi-
ble appearances of each individual interest point as a class, which
we refer to as its view-set. During training, given a fronto-parallel
view of the target object, interest points are extracted and numerous
synthetic views of their possible appearance under perspective dis-
tortion are generated and used to train a set of randomized trees [2].
These trees are then used at run-time to recognize the distorted in-
terest points by deciding to which view-set, if any, their appearance
belongs. In theory, we could have used other kinds of classifiers for
our purpose but we chose randomized trees because they are robust
and fast, while naturally handling multi-class problems and being
reasonably easy to train.
In this context, a simple and fast interest point detector such as

the Harris corner detector [8] suffices for operation even under large
perspective and scale variations, which results in a further perfor-
mance increase. While earlier methods require detectors that can
be depended upon to produce very repeatable results, which can be
very time-consuming, the most repeatable object keypoints for the
specific target object are simply found during the training phase.

3.1.2 Estimating the Homographies

Given enough correspondences, the homography between the tar-
get image and the input one is easily estimated from the correspon-
dences by RANSAC followed by non-linear least-squares estima-
tion. For each successful such computation, this gives us a homog-
raphy Hc←p such that:

λ

⎡

⎣

u
v
1

⎤

⎦ =Hc←p

⎡

⎣

X
Y
1

⎤

⎦ (1)

that maps each point 1 [X ,Y ]⊤ of the calibration pattern plane to its

corresponding 2D point [u,v]⊤ in camera c for a given pose p. The
scalar λ accounts for the fact that homographic transformation is
expressed in homogeneous coordinates.

H1

H2

H3
H4

H5

Fronto−parallel view

of the calibration 

object

H3

H5

3.1.3 Selecting the Best Homographies

Unlike checkerboard-based methods, our approach to estimating
the homographies is sufficiently robust not to generate erroneous
matches that would have to be removed by hand. What happens in
practice is that when the pattern is either occluded or too slanted, it
is simply not detected.

However, this is still not quite enough because some of these
homographies are inherently ambiguous or singular from a calibra-
tion point of view. As shown in Fig. 4, these unreliable homogra-
phies come in two flavors. First, the ones that insufficiently distort
the pattern are ambiguous and, depending on the noise, may yield
wildly different pose estimates. Second, those that distort the pat-
tern too much also produce unreliable pose estimates because the
interest points become difficult to locate precisely enough.

To overcome this problem, we define a square in the plane at-
tached to the pattern and measure the angle at each corner after
warping it by the homography. If one of the angles is too large or
too close to π

2 , the homography is rejected. More formally, a ho-
mography H is rejected if at least one of the angles α of the warped
square verifies

cos(α) > cos(α0) or
cos(α) < cos(π −α0) or
cos( π

2 +α1) < cos(α) < cos( π
2 −α1).

Good results have been achieved using α0 = 0.01 and α1 = 0.005.
The filtered homographies are then sorted by the likelihood as-
signed by the robust estimator of Section 3.1.2 and only the best
ones are kept. In practice, we retain around fifty for each camera.
As will be shown in Section 5.1, this is enough to guarantee accu-
racy without imposing an unnecessary computational burden.

3.2 Initial Estimation of the Internal Parameters

The internal parameters are first estimated for each camera indi-
vidually from the homographies Hc←p using a method similar to
the ones of [17, 21]. The computation is quite standard and is de-
scribed in appendix for the sake of completeness. This yields for

1The symbol ⊤ denotes the transpose operator throughout the paper.



72

(a) (b) (c)

each camera c a matrix of internal parameters

Kc =

⎡

⎣

τc fc 0 u0c
0 fc v0c
0 0 1

⎤

⎦ , (2)

where fc stands for the focal length, τc for the aspect ratio, and
(u0c,v0c)

⊤ for the principal point. These internal parameters of
all the cameras will then be refined together with the external ones
during the non-linear global minimization of Section 3.4.

3.3 Initial Estimation of the Poses

We recover the external parameters of each camera in a common
referential in two steps. First, our algorithm computes external pa-
rameters in a coordinate system attached to the calibration pattern
for each frame independently by making use of the internal param-
eters as estimated previously and the homography related to the
frame. It then selects a common referential and computes camera
poses in this referential by composing rotations and translations be-
tween pairs of frames.

3.3.1 Displacements between the Calibration Object and the Indi-
vidual Cameras

Given a homography and the intrinsic parameters, we estimate the
displacement of the calibration object with respect to the camera as
described in the appendix. This step gives us the relative rotation R
and translation t of the calibration object with respect to the camera.
Together, they represent the rigid displacement corresponding to
pose p as seen from camera c. We write this displacement as the
4×4 matrix

[R, t]c←p =

[

Rc←p tc←p
0 1

]

. (3)

The reverse displacement is computed by inverting the matrix
which we denote as [R, t]p←c.

3.3.2 Handling Non-Overlapping Cameras

In practice, the calibration object may never be seen by all cameras
simultaneously. Our system therefore selects as a common referen-
tial the one attached to the pose of the calibration object seen by the
largest number of cameras. It then expresses all the external cam-
era parameters in this referential by composing the displacements
of Eq. 3 and their inverses.

Fig. 2 illustrates this behavior. In this case, p0 provides the com-
mon referential because it is seen by three cameras whereas p1 is
seen by only two. Even though camera c3 does not see p0, its ex-
ternal parameters in this referential can be estimated by composing

c    p
3 1

p    c
1 2

c    p
2 0

[R,t]

[R,t]

p p

cc c

[R,t]

c
0 1

0

2 3

1

p0
p1 [R,t]c3 c3

[R,t]c3 = [R,t]c3←p1 [R,t]p1←c2 [R,t]c2←p0

the pose of p0 with respect to camera c2 with the displacement be-
tween cameras c2 and c3, which can itself be estimated from the
poses of p1 with respect to these two cameras.
Recovering such chains amounts to compute paths between

nodes of a connected graph, which is well understood from an algo-
rithmic viewpoint [7]. More specifically, we define a graph whose
nodes correspond to the cameras and the poses of the calibration
object, such as the one depicted by Fig. 5. An edge links a camera
node and a pose node when the camera sees the pose and is labeled
with the corresponding displacement.
Let p0 denote the pose that defines the common referential, and

[R, t]c the pose parameters of camera c in this common referential.
Since we have by definition [R, t]c = [R, t]c←p0 , we first look for a
path between the p0 and c nodes, which we write as

p0→ cσ(1) → pσ(2) → cσ(3) → . . . pσ(n) → c .

where σ(.) is a mapping function on the indices that defines the
path. Note that the path alternates object pose nodes and camera
nodes. It gives us a way to compute [R, t]c from the displacements
we just computed since

[R, t]c = [R, t]c←p0 =

[R, t]c←pσ(n)
. . . [R, t]cσ(3)←pσ(2)

[R, t]pσ(2)←cσ(1)
[R, t]cσ(1)←p0

.

The [R, t]p pose parameters of the calibration object can be esti-
mated similarly.
Obviously, this will only work if the graph has one single con-

nected component. In practice, assuming that no camera has a field
of view that does not overlap at all any of the others, this is always
the case if we move the calibration pattern sufficiently.

3.4 Refining the Estimation

Computing displacements by composing pairwise motions is effec-
tive but not particularly accurate. Therefore, to refine not only the



73

pose parameters but also the intrinsic ones, we minimize with re-
spect to all cameras simultaneously the sum of the reprojection er-
rors for the point correspondences used during the detection step of
Section 3.1.2. This bundle adjustment is expressed as

C

∑
c=1

P

∑
p=1

M(c,p)

∑
k=1

∥

∥

∥

∥

∥

∥

(

uc,p,k
vc,p,k

)

−proj

⎛

⎝Kc, [R, t]c [R, t]−1p ,

⎛

⎝

Xc,p,k
Yc,p,k
0

⎞

⎠

⎞

⎠

∥

∥

∥

∥

∥

∥

2

, (4)

where

• C is the number of cameras, P the number of poses of the
calibration object, and M(c, p) the number of matches found
by the detection stage for camera c and pose p. M(c, p) = 0 if
pose p of the calibration object is not seen by camera c;

• [uc,p,k,vc,p,k ]
⊤ and [Xc,p,k,Yc,p,k ,0]

⊤ are respectively are a 2–
D point and a 3–D point matched by the detection step;

• proj(K, [R, t] ,M) returns the projection of 3–D pointM under
pose [R, t] and internal parameters K.

To increase the robustness of our algorithm, we introduce a simple
robust estimator in Eq. 4 to eliminate potentially incorrect corre-
spondences.

3.5 Online vs. Offline Processing

All the computations up to the initial estimation of pose parame-
ters of Section 3.3 are performed in real-time on an ordinary PC.
The refinement stage of Section 3.4 is much slower and requires a
few minutes for long calibration sequences. In practice, this means
that we can run the system in real-time mode until the graph of
Section 3.3.2 has indeed one single connected component and we
can obtain initial estimates, which will then be refined offline. This
makes the system extremely easy to use.

In real-time mode, the processing time varies from one frame to
the other. It is therefore important to drop frames in a synchronous
manner: If a camera drops a frame, all other cameras should also
drop it. Since in our implementation the cameras are connected
to several computers, we developed a networked solution to this
problem: A process is attached to each camera and is considered
as a network client that connects to a server. Every time a new
frame arrives, the client informs the server and puts the image in
a queue. The server either ask the client to accept or to drop the
frame, depending on the other cameras and on the current compu-
tational load. If a frame is accepted, every client is informed and
puts the image in a waiting-for-computation queue. At this point,
the computation thread of each client, if ready, can start to detect
the calibration pattern in the image. Upon termination, it sends the
result to the server. Once the server has collected homographies
and matches from every client, it can either accumulate data for
calibration or, if the calibration has already been done, augment the
images.

4 PHOTOMETRIC CALIBRATION

Convincingly adding virtual objects into a scene not only requires
proper registration, which is what the technique of Section 3 pro-
vides, but also photometric modeling so that they can be relighted
correctly and properly blend into the environment.

As discussed in Section 2, most existing techniques perform ge-
ometric and photometric calibration as independent steps that re-
quire different camera settings. By contrast, our approach relies on
the very same set of images to perform both kinds of calibration.
For each camera, as long as the lighting and camera settings do not
change, the pixel intensities within the calibration pattern depend

only on its normal. In other words, each image in which the pat-
tern is detected provides a number of samples corresponding to one
individual surface orientation. Because we can easily and automati-
cally collect many such samples, we can simultaneously recover the
gain and bias of each camera and create an environmental lighting
model that can be used for relighting purposes.
In this section, we first introduce the illumination model we use

for complex environments such as the one depicted by Fig. 1(a). We
then present two complementary approaches to instantiating it. The
first one involves solving a linear system of equations derived from
the calibration sequence to express the illumination as a function
of surface normals. Once the gains and biases have been estimated,
this model can be incrementally updated to reflect lighting changes.
The algorithm can therefore be embedded into a real-time applica-
tion that handles non-constant lighting. However, it is not designed
to synthesize either shadows or specular reflections. We have there-
fore developed a second approach based on deconvolution. It ex-
plicitly computes a light distribution that could have produced the
observed pixel intensities. It is more computationally intensive and
makes no provisions for time-varying lighting but allows added vir-
tual objects to cast shadows and produce realistic specularities.

4.1 Illumination Model

In a natural environment with extended light sources such as a room
lit by rectangular windows, we cannot assume that we only deal
with a small number of point light sources. Instead, we consider
a potentially infinite number of sources that we assume to be both
directional and outside the capture volume. For our purposes, this
provides a satisfactory approximation of extended light sources.
By printing the calibration pattern on matte paper, we ensure that

it reflects light equally in all directions. As a result, the difference
in intensity values between images taken at the same time by two
different cameras are due to shutter speed or aperture, but not to
camera pose. If we further assume that the same sources are visi-
ble from every point of the calibrated volume, the amount of light
reflected by a point on the calibration pattern depends only on the
surface normal nt at time t. To be robust to small localization errors,
we do not consider individual points, but small patches π that aver-
age the local property around points on the calibration pattern. The
irradiance x at surface patch π and time t can therefore be written
as

xπ ,t =
L

∑
l=0

max(ntdl,0)Ωl , (5)

where Ωl represents the radiosity, or power, of source l and dl its
direction. We assume a linear response for the cameras and write
the pixel intensity I(c,π,t) of patch π in the image acquired by
camera c at time t as

I(c,π,t) = gcaπxt +bc , (6)

where aπ is the average surface albedo over π , gc the camera gain,
and bc its bias. In practice these quantities can only be known up to
a scale factor. We use for aπ the mean intensity over π in an image
acquired under uniform diffuse lighting such as the ones of Fig. 3,
which simply amounts to selecting a particular scale factor.

4.2 Online Lighting Calibration

Instead of explicitly evaluating theΩ radiances of Eq. 5, we directly
compute the xπ ,t irradiances as a function of the orientation of the n
normals. More specifically, we simultaneously compute the gains,
biases, and xπ ,t irradiance values for the normals we have observed.
We then interpolate this set to estimate the unobserved values.
This yields a light map M(n) such as the one depicted by

Fig. 6(a). When augmenting an image c with a virtual surface



74

(a) (b)

whose normal is n, the augmented pixel value is set to I(v,c,t) =
gcavMt(nv)+bc, where av is the virtual albedo. This lightmap ren-
dering is easily done by the GPU and requires only a short OpenGL
shading language program.

4.2.1 Linear Estimation of the Light Map

The geometric calibration process provides many surface normals
nt and pixel values I(c,π,t). To solve for the unknown gains, bi-
ases, and radiances, we linearize the problem by replacing some
variables in Eq. 6. Let

g′c =
1

gc
,

b′c =
bc

gc
.

For each patch in each detected frame, Eq. 6 can be rewritten as

−I(c,π,t)g′c+aπ xt +b
′
c = [−I(c,π,t) 1 aπ ]

⎡

⎣

g′c
b′c
xt

⎤

⎦ = 0 . (7)

Putting all these equations together yields a large but sparse linear
system and we find our solution as the eigenvector associated to the
smallest eigenvalue.

4.2.2 Incrementally Updating the Light Map

The above computation assumes that the lighting does not change
during calibration. However, once the gains and biases are known,
computing a new surface intensity xu from a new observed pixel
cπ ,u is trivial. Thus, if the illumination changes, new frames can
update the light map at the same time it shades a virtual scene.
Each frame can sample only one normal at a time. Thus, if the light
changes suddenly, it is not possible to update the whole irradiance
map at once. Instead, we locally update the irradiance around the
measured normal and keep the old values for other normals.
Let Mt(n) be the light map at time t To update its value for a

surface of normal n with the recently computed sample xt+1 corre-
sponding to the observed real surface orientation nt+1, we write

∀n :Mt+1(n) = (1− f (n))Mt(n)+ f (n)xt+1 ,

where

f (n) =

{

exp
(

−cos−1 (n ·nt+1) 12s2
)

if cos (n ·nt+1) > 0

0 otherwise

and s a constant blurring factor. In practice, our system initializes
the light map using the solution of the linear system of equations
and then updates it for each new frame.

4.3 Offline Estimation of Light Distribution for Rendering
Specular Effects and Casting Shadows

While the previous method yields satisfying results for fast online
pre-visualization, its accuracy suffers from two numerical prob-
lems. First, it does not minimize a physical error since the problem
is intrinsincally non-linear. Second, it solves simultaneously for
camera-related parameters, the gains and the biases, and lighting-
related parameters, the irradiances. As is the case for geometric
camera calibration, performing non-linear optimization and disso-
ciating the estimation of the internal parameters, here the gains and
biases, from that of the external ones, here the irradiances, yields
more reliable results.
Therefore, we developed an offline approach to doing so. It is

computationally more expensive than the online technique of Sec-
tion 4.2 but produces a more sophisticated illumination model that
allows for specular highlights, cast shadows, and changing the ma-
terials of the virtual objects.
We model the lighting environment as a regularly sampled dome

of lights of varying power, such as the one depicted by Fig. 6(b).
We begin by estimating the gain and bias of each camera in a way
that is independent from lighting effects and normalizing the pixel
intensities. We then apply a regularized deconvolution algorithm on
the observed pixel intensities within the calibration object to assign
to each individual light the power that best explains the observa-
tions.

4.3.1 Relative Cameras Responses

To estimate the gains and biases, we consider pairs of views taken
at the same time by two different cameras. As we will see, this
removes the need from separately computing the surface albedo aπ
and the irradiance xπ , thus avoiding an additional source of noise.
LetD be the set of triplets (c,d,t) such that both cameras c and d see
the calibration object at time t. Assuming a Lambertian behavior of
the calibration pattern, we can compute our gains and biases as

argmin
g1...gC ,b1...bC

∑
(c,d,t)∈D

∑
π

(

I(c,π,t)−bc
gc

− I(d,π,t)−bd
gd

)2

. (8)

We can now define a normalized image Ī from the image taken by
camera c as

Ī(c,π,t) =
I(c,π, t)−bc

gc
, (9)

and express the deconvolution in terms of these normalized images.

4.3.2 Deconvolution

From Eqs. 5,6, and 9, the normalized intensity at time t of a patch
π with normal n can be written as

Ī(c,π,t) = aπ

L

∑
l=0

max(nt ·dl ,0)Ωl , (10)

where L is the number of sources used to represent the lighting en-
vironment and dl the direction of source l with power Ωl . Our ob-
jective is to recover the powers Ωl of each source so as to minimize

εobs (Ωl) = ∑
c,π ,t

[

Ī(c,π, t)−aπ

L

∑
l=0

max(nt ·dl ,0)Ωl

]2

, (11)

which represents the sum of the squares of the differences between
the intensities predicted by the lighting model and the observed
ones. Unfortunately, since the Lambertian model acts as a low-pass



75

 1800

 1850

 1900

 1950

 2000

 40  60  80  100  120  140  160  180  200

F
o

ca
l 

le
n

g
th

Number of homographies

Focal stability (5 cameras, 1 sequence)

Camera 1
Camera 2
Camera 3
Camera 4
Camera 5  0

 50

 100

 150

 200

 250

 300

 20  40  60  80  100  120  140  160  180  200

O
p

ti
m

iz
at

io
n

 t
im

e 
[s

ec
o

n
d

s]

Number of homographies

Optimization time evolution

 1700

 1750

 1800

 1850

 1900

 1950

 40  60  80  100  120  140  160  180  200

F
o

ca
l 

le
n

g
th

Number of homographies

Focal stability

Camera 2, sequence A
Camera 2, sequence B

(a) (b) (c)

filter on the lighting, this is an ill-posed deconvolution problem that
has many potential solutions. To obtain a realistic one, we must first
constrain the Ωl to be positive as not doing so would allow the ex-
istence of lights with negative power. To this end, we optimize with
respect to the square rootsΩ′

l =
√

Ωl , instead of theΩl themselves.
We then define two regularization terms to be added to εobs (Ωl).
The first one is a smoothness term similar to the one introduced in
[14] that we write as

εad j
(

Ω′
l

)

= ∑
i, j adjacent

[

(

Ω′
i

)2−
(

Ω′
j

)2
]2

. (12)

Minimizing it forces adjacent sources to be of relatively similar
powers. The second is designed to encourage the good localization
of narrow light sources and is written as

εstick
(

Ω′
l

)

=
L

∑
l

[

(

Ω′
0,l

)2
−

(

Ω′
l

)2
]2

. (13)

In practice, we therefore solve

argmin
Ω′

l

(

εobs(Ω
′
l)+αεad j(Ω

′
l)+βεstick(Ω

′
l)

)

, (14)

where α and β are regularization constants. To this end, we use
a standard Levenberg-Marquardt least-squares solver but define a
specific optimization schedule that initially favors a relatively small
subset of light sources and then progressively allows more sources
to contribute to the lighting. At the first iteration, the initial power
of the sources Ω′

0,l are set to zero and the parameter β is given a
high value. This results in an initially small set of sources with
significant amounts of power while the majority of the remaining
ones are still turned off. The next iterations start from the previous
power estimation and the β parameter is progressively decreased to
allow the recovery of more wide-spread sources. This results is a
lighting sphere with smooth but well-defined clusters instead of a
completely smoothed out distribution.
The knowledge of the source positions allows for realistically

shaded virtual objects. Realistic cast shadows and specularities can
be computed using a Phong shading model. As shown in the next
section, the conjunction of tracking and lighting distribution esti-
mation allows us to render convincing augmented images.

5 RESULTS

In this section we first evaluate the accuracy and reliability of the
geometric camera calibration of Section 3. We then show that us-
ing both the corresponding geometric camera parameters and the

Cam 1 Cam 2 Cam 3 Cam 4 Cam 5

τ f -0.16% 0.32% 0.27% 1.12% 0.56%

f -0.08% 0.33% 0.19% 1.22% 0.53%

u0 5.57% 6.49% 9.81% 5.85% 6.00%

v0 0.11% 0.76% 3.15% -11.7% -3.56%

Kc

photometric ones returned by the procedure of Section 4 lets us
augment the scene with objects that are correctly registered and
lighted.

5.1 Accuracy of the Geometric Calibration Parameters

To test the accuracy of the camera parameters that our system re-
covers, we first trained a classifier to recognize the interest points of
the pattern of Fig. 3(a), as discussed in Section 3.1.1. We then used
a 5 cameras setup to record two different sets of video sequences by
waving the pattern in front of the cameras. Finally, we performed
the calibration independently for each set.

Fig. 7(a) depicts the focal lengths recovered using the first set
of sequences. They are shown as a function of the total number
of homographies retained to perform the computation. When this
number climbs above 140, the estimates become quite stable. It
therefore does not make sense to use many more since the compu-
tational cost increases almost linearly with this number, as shown
in Fig. 7(b).

In Fig. 7(c) and Table 1 we compare the results obtained inde-
pendently using the two sets of video sequences. In Fig. 7(c), we
superpose the focal length estimates, again drawn as a function of
the total number of homographies retained. As before, once we use
more than 140, the two estimates become very close. This is a very
good indication that they are accurate since they were computed in-
dependently. As shown by Table 1, this is true not only for the focal
lengths but also for the principal point locations.

We have not obtained ground truth for the external camera pa-
rameters. However, as evidenced by the supplementary videos, the
virtual object appears to be very stable with respect to the calibra-
tion pattern, which would not be the case if they were poorly recov-
ered.



76

5.2 Adding and Relighting Virtual Objects

We used a three camera set-up similar to the one depicted by
Fig. 1(a) to produce the augmented images of Fig. 8. In the first
row, we use only the geometric calibration parameters to draw the
virtual teapot at the right place and use a randomly selected point
light source to relight it. Even though the teapot is correctly reg-
istered, the result is unconvincing because the shading patterns do
not match those of the other real objects present in the scene. In the
middle row, we use the output of the online photometric calibration
procedure of Section 4.2 to relight the object. The result is much
improved but highlights and shadows are still missing. As shown
in the bottom row of the figure, using the output of the more so-
phisticated offline calibration procedure of Section 4.3 solves both
problems. Both highlights and shadows now appear at the right
places, thus significantly increasing the realism. We supply the cor-
responding videos as supplementary material.
Fig. 9 showcases the flexibility that our multi-camera system

provides. In two of the three images, the calibration pattern is not
visible in the view we are trying to augment and a monocular ap-
proach that relies on detecting it would fail. However, because it
is seen by another camera and because the relative positions of the
camera with respect to each other have been computed, we can nev-
ertheless draw it at the right location, as evidenced by the fact that
the real box occludes it correctly.
Our system can use any sufficiently textured pattern for calibra-

tion purposes. In Fig. 10, we demonstrate this by using the piece
of cardboard of Fig. 3(b) to calibrate and augment the scene. Note
that the virtual teapot casts a realistic shadow on the real cardboard,
thereby indicating that both the geometric and photometric cali-
bration are correct. We have also successfully used the book of
Fig. 3(c) for this purpose.

6 CONCLUSION

We have presented a system for simultaneous geometric and pho-
tometric calibration of multiple cameras that is extremely easy to
use. At run-time, the only manual intervention required involves
waving a planar calibration pattern in front of the cameras. Fur-
thermore, it imposes very few constraints on the relative positions
and orientations of the cameras and can handle complex real-world
illuminations.
A natural extension would be to correct for distorion [21] and vi-

gnetting. However, even without it, our system yields both accurate
camera parameters that let us add virtual 3D objects at the appro-
priate locations and a lighting model that allows us to relight them
convincingly. Since these are the two ingredients that are required
by Augmented Reality applications, we believe that our approach
to calibration is ideally suited for this purpose. We urge interested
readers to download the source code to try it for themselves [1].

APPENDIX

Internal Parameters from a Set of Homographies

The computation of internal parameters from a set of homographies
is quite standard [17, 21], but we give it here for the sake of com-
pleteness. First, we write the matrix of internal parameters as

K=

⎡

⎣

τ f 0 u0
0 f v0
0 0 1

⎤

⎦ ,

where f represents the focal length, τ the aspect ratio, and (u0,v0)
⊤

the principal point. We want to estimate K from a set of homo-
graphies that map points on a planar object to points on captured
images for different object positions.

We associate to each camera a projection matrix

P=K [R | t] , (15)

whereR is a 3×3 rotation matrix and t a translation vector. Without
loss of generality, we can choose Z = 0 as the plane of our calibra-
tion pattern. The relation between K, R, and t and the homography

H that maps a pointM= [X ,Y,0]⊤ of this plane to its corresponding

2D pointm= [u,v]⊤ under perspective projection can be written as

[

m
1

]

∝ P

[

M
1

]

=K [r1 r2 r3 t]

⎡

⎢

⎣

X
Y
0
1

⎤

⎥

⎦
=K [r1 r2 t]

⎡

⎣

X
Y
1

⎤

⎦ ,

(16)
where r1, r2 and r3 respectively are the first, second and third col-
umn of the rotation matrix R, and the symbol ∝ means “equal up
to a scale factor”. Identifying the terms of Eq. 1 and Eq. 15 yields
H ∝ K [r1 r2 t]. For convenience, we introduce a 3× 3 matrix T
with

T=

⎡

⎣

1 0 t′1
0 1 t′2
0 0 t′3

⎤

⎦ ,

where t′ = R−1t= R⊤t that lets us write

H∝KRT . (17)

To find the relations between the coefficients of H and the inter-
nal parameters, let us now compute the product H⊤ωH where ω
is the matrix (KK⊤)−1, also known as the image of the absolute
conic. We have

H⊤ωH =H⊤K−⊤K−1H ∝ (KRT)⊤K−⊤K−1(KRT)

and

(KRT)⊤K−⊤K−1(KRT) = T⊤R⊤K⊤K−⊤K−1KRT=

T⊤T=

⎡

⎣

1 0 −t′1
0 1 −t′2

−t′1 −t′2 ‖t′‖2

⎤

⎦ .

By considering the expressions of the elements of the 2× 2 sub-
matrix on the top-left of the T⊤T matrix, we obtain the two follow-
ing equations:

{

h⊤1 ωh1−h⊤2 ωh2 = 0
h⊤1 ωh2 = 0

, (18)

where hi represents the column i of H. It follows that:

ω ∝

⎡

⎣

1 0 −u0
0 τ2 −τ2v0

−u0 −τ2v0 τ2 f 2+u20+ τ2v20

⎤

⎦ . (19)

By rearranging the terms of Eq. 18 and Eq. 19, we obtain the fol-
lowing linear system in some of the coefficients of ω:

AW= h (20)

where

A=
[

2(h11h31−h12h32) h221−h222 2(h21h31−h22h32) h231−h232
h11h32+h12h31 h22h21 h32h21+h22h31 h32h31

]

W=

⎡

⎢

⎣

ω13
ω22
ω23
ω33

⎤

⎥

⎦
and h=

[

h211−h212
h11h12

]

.



77

First row

Second row

Third row

Each homography yields such a pair of equations. For each camera,
this produces an over-constrained system that we solve in the least-
squares sense. The internal parameters u0, v0, f , and τ can then
be estimated from ω13, ω22, ω23, and ω33. In our implementation,
they are refined by the final non-linear optimization.

Displacement between a Camera and a Planar Object from a
Set of Homographies and the Internal Parameters

Once the internal camera parameters have been recovered from the
whole sequencem we can recover the rotation R and the translation
t between a particular pose of the planar object and the camera as

follows.
Recall from Eq. 17 that H ∝ KRT, where R and t are expressed

in a coordinate system attached to the planar object. Equivalently,
we write:

RT ∝K−1H .

Since the columns of R should have a norm equal to 1, the scale
factor can be retrieved, and a first estimation of these columns is
obtained as:

r1 = K−1h1
‖K−1h1‖

, r2 = K−1h2
‖K−1h2‖

, r3 = r1×r2 ,

where × denotes the cross-product of two vectors. Because the ho-



78

mographies are noisy, the resulting rotation matrix is not orthonor-
mal and we correct it using the procedure given in the appendix
of [21] which seeks the closest orthonormal matrix in the Frobe-
nius sense using a Singular Value Decomposition. Similarly the
translation vector t can be approximated as:

t=
2K−1h3

∥

∥K−1h1
∥

∥+
∥

∥K−1h2
∥

∥

.

REFERENCES

[1] CVLab Software. .

[2] Y. Amit and D. Geman. Shape Quantization and Recognition with

Randomized Trees. Neural Computation, 9(7):1545–1588, 1997.

[3] P. Debevec. Rendering synthetic objects into real scenes: Bridging tra-

ditional and image-based graphics with global illumination and high

dynamic range photography. In ACM SIGGRAPH, July 1998.

[4] G. Drettakis, L. Robert, and S. Bougnoux. Interactive common illu-

mination for computer augmented reality. In Eurographics Rendering

Workshop, pages 45–56, June 1997.

[5] M. Fiala and C. Shu. Fully Automatic Camera Calibration Using Self-

Identifying Calibration Targets. Technical report, National Research

Council Canada, 2005.

[6] S. Gibson and A. Murta. Interactive Rendering with Real-World Illu-

mination. In Eurographics Workshop on Rendering, June 2000.

[7] J. Gross and J. Yellen. Graph theory and its applications. CRC Press,

Inc., Boca Raton, FL, USA, 1999.

[8] C.G. Harris and M.J. Stephens. A Combined Corner and Edge Detec-

tor. In Fourth Alvey Vision Conference, Manchester, 1988.

[9] R. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, 2000.

[10] M. Kanbara and N. Yokoya. Real-Time Estimation of Light Source

Environment for Photorealistic Augmented Reality. In International

Conference on Pattern Recognition, 2004.

[11] V. Lepetit and P. Fua. Keypoint recognition using randomized trees.

IEEE Transactions on Pattern Analysis and Machine Intelligence,

2006. In press.

[12] V. Lepetit, P. Lagger, and P. Fua. Randomized Trees for Real-Time

Keypoint Recognition. In Conference on Computer Vision and Pattern

Recognition, San Diego, CA, June 2005.

[13] H.G. Maas. Image sequence based automatic multi-camera system

calibration techniques. ISPRS Journal of Photogrammetry and Re-

mote Sensing, 54(5-6):352–359, December 1999.

[14] S. R. Marschner and D. P. Greenberg. Inverse lighting for photogra-

phy. In Proceedings of the Fifth Color Imaging Conference, Society

for Imaging Science and Technology, 1997.

[15] Open Source Computer Vision Library. Intel.

http://www.intel.com/technology/computing/opencv/.

[16] I. Sato, Y. Sato, and K. Ikeuchi. Acquiring a Radiance Distribution to

Superimpose Virtual Objects onto a Real Scene. IEEE Transactions

on Visualization and Computer Graphics, 1999.

[17] P. Sturm and S. Maybank. On Plane-Based Camera Calibration: A

General Algorithm, Singularities, Applications. In Conference on

Computer Vision and Pattern Recognition, pages 432–437, June 1999.

[18] T. Svoboda, D. Martinec, and T. Pajdla. A convenient multi-camera

self-calibration for virtual environments. PRESENCE: Teleoperators

and Virtual Environments, 14(4):407–422, August 2005.

[19] T. Ueshiba and F. Tomita. Plane-based calibration algorithm for multi-

camera systems via factorization of homography matrices. In Interna-

tional Conference on Computer Vision, pages 966–973, 2003.

[20] Viconpeak. http://www.vicon.com/.

[21] Z. Zhang. A flexible new technique for camera calibration. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22:1330–

1334, 2000.


