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Abstract

We propose an entirely data-driven approach to estimat-

ing the 3D pose of a hand given a depth image. We show

that we can correct the mistakes made by a Convolutional

Neural Network trained to predict an estimate of the 3D

pose by using a feedback loop. The components of this feed-

back loop are also Deep Networks, optimized using train-

ing data. They remove the need for fitting a 3D model to

the input data, which requires both a carefully designed fit-

ting function and algorithm. We show that our approach

outperforms state-of-the-art methods, and is efficient as our

implementation runs at over 400 fps on a single GPU.

1. Introduction

Accurate hand pose estimation is an important require-

ment for many Human Computer Interaction or Augmented

Reality tasks [10], and has been steadily regaining ground

as a focus of research interest in the past few years [13, 14,

19, 23, 26, 30, 31, 37], probably because of the emergence

of 3D sensors. Despite 3D sensors, however, it is still a very

challenging problem, because of the vast range of potential

freedoms it involves, and because images of hands exhibit

self-similarity and self-occlusions.

A popular approach is to use a discriminative method

to predict the position of the joints [13, 21, 30, 31, 35],

because they are now robust and fast. To refine the pose

further, they are often used to initialize an optimization

where a 3D model of the hand is fit to the input depth

data [1, 8, 23, 24, 26, 28, 29, 36]. Such an optimization

remains complex, however, and typically requires the main-

taining of multiple hypotheses [22, 23, 26]. It also relies on

a criterion to evaluate how well the 3D model fits to the in-

put data, and designing such a criterion is not a simple and

straightforward task [1, 8, 29].

In this paper, we first show how we can get rid of the 3D

model of the hand altogether and build instead upon recent

work that learns to generate images from training data [9].

We then introduce a method that learns to provide updates
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Figure 1: Overview of our method. We use a first CNN 1

to predict an initial estimate of the 3D pose given an input

depth image of the hand. The pose is used to synthesize an

image 2 , which is used together with the input depth image

to derive a pose update 3 . The update is applied to the pose

and the process is iterated.

for improving the current estimate of the pose, given the in-

put image and the image generated for this pose estimate as

shown in Fig. 1. By iterating this method a number of times,

we can correct the mistakes of an initial estimate provided

by a simple discriminative method. All the components are

implemented as Deep Networks with simple architectures.

Not only is it interesting to see that all the components

needed for hand registration that used to require careful de-

sign can be learned instead, but we will also show that our

approach has superior performance when compared to the

state-of-the-art methods. It is also efficient; our implemen-

tation runs at over 400 fps on a single GPU.

Our approach is related to generative approaches [3], in

particular [32] which also features a feedback loop reminis-

cent of ours. However, our approach is deterministic and

does not require an optimization based on distribution sam-

pling, on which generative approaches generally rely, but

which tend to be inefficient.
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2. Related Work

Hand pose estimation is a frequently visited problem in

Computer Vision, and is the subject of a plethora of pub-

lished work. We refer to [10] for an overview of earlier

work, and here we will discuss only more recent work,

which can be divided into two types of approach.

The first type of approach is based on discriminative

models that aim at directly predicting the joint locations

from RGB or RGB-D images. Some recent works include

[13, 14, 17, 30, 31] that use different approaches with Ran-

dom Forests, but restricted to static gestures, showing diffi-

culties with occluded joints, or causing high inaccuracies at

finger tips. These problems have been addressed by more

recent works of [21, 35] that use Convolutional Neural Net-

works, nevertheless still lacking in high accuracy levels.

Our approach, however, is more related to the second

type, which covers generative, model-based methods. The

works of this type are developed from four generic build-

ing blocks: (1) a hand model, (2) a similarity function that

measures the fit of the observed image to the model, (3) an

optimization algorithm that maximizes the similarity func-

tion with respect to the model parameters, and (4) an initial

pose from which the optimization starts.

For the hand model, different hand-crafted models were

proposed. The choice of a simple model is important for

maintaining real-time capabilities, and representing a trade-

off between speed and accuracy as a response to a poten-

tially high degree of model abstraction. Different hand-

crafted geometrical approximations for hand models were

proposed. For example, [26] uses a hand model consisting

of spheres, [23] adds cylinders, ellipsoids, and cones. [29]

models the hand from a Sum of Gaussians. More holistic

hand representations are used by [1, 28, 36], with a linear

blend skinning model of the hand that is rendered as depth

map. [37] increases the matching quality by using depth

images that resemble the same noise pattern as the depth

sensor. [8] uses a fully shaded and textured triangle mesh

controlled by a skeleton.

Different modalities were proposed for the similarity

function, which are coupled to the used model. The modal-

ities include, e.g., depth values [19, 22, 26], salient points,

edges, color [8], or combinations of these [1, 23, 29, 36].

The optimization of the similarity function is a critical

part, as the high dimensional pose space is prone to lo-

cal minima. Thus, Particle Swarm Optimization is often

used to handle the high dimensionality of the pose vec-

tor [22, 23, 26, 28]. Differently, [1, 8, 29] use gradient-

based methods to optimize the pose, while [19] uses dy-

namics simulation. Due to the high computation time of

these optimization methods, which have to be solved for

every frame, [37] does not optimize the pose but only eval-

uates the similarity function for several proposals to select

the best fit.

In order to kick-start optimization, [29] uses a dis-

criminative part-based pose initialization, and [26] uses

finger tips only. [37] predicts candidate poses using a

Hough Forest. [8] requires predefined hand color and po-

sition, and [23] relies on a manual initialization. Fur-

thermore, tracking-based methods use the pose of the last

frame [19, 23, 36], which can be problematic if the differ-

ence between frames is too large, because of fast motion or

low frame rates.

Our approach differs from previous work in the first three

building blocks. We do not use a deformable CAD model

of the hand. Instead, we learn from registered depth im-

ages to generate realistic depth images of hands, similar to

work on inverse graphics networks [9, 15], and other recent

work on generating images [11, 16]. This approach is very

convenient, since deforming correctly and rendering a CAD

model of the hand in a realistic manner requires a significant

input of engineering work.

In addition, we do not use a hand-crafted similarity func-

tion and an optimization algorithm. We learn rather to pre-

dict updates that improve the current estimate of the hand

pose from training data, given the input depth image and

a generated image for this estimate. Again this approach is

very convenient, since it means we do not need to design the

similarity function and the optimization algorithm, neither

of which is a simple task.

Since we learn to generate images of the hand, our ap-

proach is also related to generative approaches, in particu-

lar [32]. It uses a feedback loop with an updater mechanism

akin to ours. It predicts updates for the position from which

a patch is cropped from an image, such that the patch fits

best to the output of a generative model. However, this step

does not predict the full set of parameters. The hidden states

of the model are found by a costly sampling process.

[20] relies on a given black-box image synthesizer to

provide synthetic samples on which the regression network

can be trained. It then learns a network to substitute the

black-box graphics model, which can ultimately be used to

update the pose parameters to generate an image that most

resembles the input. In contrast, we learn the generator

model directly from training data, without the need for a

black-box image synthesizer. Moreover, we will show that

the optimization is prone to output infeasible poses or get

stuck in local minima and therefore introduce a better ap-

proach to improve the pose.

3. Model-based Pose Optimization

In this section, we will first give an overview of our

method. We then describe in detail the different compo-

nents of our method: A discriminative approach to predict a

first pose estimate, a method able to generate realistic depth

images of the hand, and a learning-based method to refine

the initial pose estimate using the generated depth images.



Figure 2: Samples generated by the synthesizer for differ-

ent poses from the test set. Top: Ground truth depth im-

age. Middle: Synthesized depth image using our learned

hand model. Bottom: Color-coded, pixel-wise difference

between the depth images. The synthesizer is able to ren-

der convincing depth images for a very large range of poses.

The largest errors are located near the occluding contours of

the hand, which are noisy in the ground truth images. (Best

viewed on screen)

3.1. Method Overview

Our objective is to estimate the pose p of a hand in the

form of the 3D locations of its joints p = {ji}
J
i=1 with

ji = (xi, yi, zi) from a single depth image D. In practice,

J = 14 for the dataset we use. We assume that a training

set T = {(Di,pi)}
N
i=1 of depth images labeled with the

corresponding 3D joint locations is available.

As explained in the introduction, we first train a predictor

to predict an initial pose estimate p̂(0) in a discriminative

manner given an input depth image Dinput:

p̂(0) = pred(Dinput) . (1)

We use a Convolutional Neural Network (CNN) to im-

plement the pred(.) function with a standard architecture.

More details will be given in Section 3.2.

In practice, p̂(0) is never perfect, and following the mo-

tivation provided in the introduction, we introduce a hand

model learned from the training data. As shown in Fig. 2,

this model can synthesize the depth image corresponding

to a given pose p, and we will refer to this model as the

synthesizer:

Dsynth = synth(p) . (2)

We also use a Deep Network to implement the synthesizer.

A straightforward way of using this synthesizer would

consist in estimating the hand pose p̂ by minimizing the

(a) (b) (c) (d)

Figure 3: Synthesized images for physically impossible

poses. Note the colors that indicate different fingers. (a)

shows a feasible pose with its synthesized image. (b) shows

the synthesized image for the same pose after swapping the

ring and middle finger positions. In (c) the ring and middle

finger are flipped downwards, and in (d) the wrist joints are

flipped upwards. (Best viewed on screen)

squared loss between the input image and the synthetic one:

p̂ = argmin
p

‖Dinput − synth(p)‖2 . (3)

This is a non-linear least-squares problem, which can be

solved iteratively using p̂(0) as initial estimate. However,

the objective function of Eq. (3) exhibits many local min-

ima. Moreover, during the optimization of Eq. (3), p can

take values that correspond to physically infeasible poses.

For such values, the output synth(p) of the synthesizer is

unpredictable as depicted in Fig. 3, and this is likely to

make the optimization of Eq. (3) diverge or be stuck in a

local minimum, as we will show in the experiments in Sec-

tion 4.5.

We therefore introduce a third function that we call the

updater(., .). It learns to predict updates, which are applied

to the pose estimate to improve it, given the input image

Dinput and the image synth(p) produced by the synthesizer:

p̂(i+1) ← p̂(i) + updater(Dinput, synth(p̂
(i))) . (4)

We iterate this update several times to improve the initial

pose estimate. Again, the updater(., .) function is imple-

mented as a Deep Network.

We detail below how we implement and train the

pred(.), synth(.) and updater(., .) functions.

3.2. Learning the Predictor Function pred(.)

The predictor is implemented as a CNN. The network

consists of a convolutional layer with 5 × 5 filter kernels

producing 8 feature maps. These feature maps are max-

pooled with 4 × 4 windows, followed by a hidden layer

with 1024 neurons and an output layer with one neuron for

each joint and dimension, i.e. 3 · J neurons. The predictor

is parametrized by Φ, which is obtained by minimizing

Φ̂ = argmin
Φ

∑

(D,p)∈T

‖predΦ(D)− p‖22 + γ‖Φ‖22 , (5)

where the second term is a regularizer for weight decay with

γ = 0.001.



3.3. Learning the Synthesizer Function synth(.)

We use a CNN to implement the synthesizer, and we

train it using the set T of annotated training pairs. The net-

work architecture is strongly inspired by [9], and is shown

in Fig. 4. It consists of four hidden layers, which learn an

initial latent representation of feature maps apparent after

the fourth fully connected layer FC4. These latent fea-

ture maps are followed by several unpooling and convo-

lution layers. The unpooling operation, used for example

by [9, 11, 38, 39], is the inverse of the max-pooling opera-

tion: The feature map is expanded, in our case by a factor

of 2 along each image dimension. The emerging ”holes”

are filled with zeros. The expanded feature maps are then

convolved with trained 3D filters to generate another set of

feature maps. These unpooling and convolution operations

are applied subsequently. The last convolution layer com-

bines all feature maps to generate a depth image.

We learn the parameters Θ̂ of the network by mini-

mizing the difference between the generated depth images

synth(p) and the training depth images D as

Θ̂ = argmin
Θ

∑

(D,p)∈T

1

|D|
‖synthΘ(p)−D‖

2
2 . (6)

We perform the optimization in a layer-wise fashion. We

start by training the first 8× 8 feature map. Then we gradu-

ally extend the output size by adding another unpooling and

convolutional layer and train again, which achieves lesser

errors than end-to-end training in our experience.

The synthesizer is able to generate accurate images,

maybe surprisingly well for such a simple architecture. The

median pixel error on the test set is only 1.3 mm. However,

the average pixel error is 10.9±32.2mm. This is mostly due

to noise in the input images along the outline of the hand,

which is smoothed away by the synthesizer. The average

depth accuracy of the sensor is ±1 mm [25].

3.4. Learning the Updater Function updater(., .)

The updater function updater(., .) takes two depth im-

ages as input. As already stated in Eq. (4), at run-time, the

first image is the input depth image, the second image is

the image returned by the synthesizer for the current pose

estimate. Its output is an update that improves the pose es-

timate. The architecture, shown in Fig. 5, is inspired by the

Siamese network [6]. It consists of two identical paths with

shared weights. One path is fed with the observed image

and the second path is fed with the image from the synthe-

sizer. Each path consists of four convolutional layers. We

do not use max-pooling here, but a filter stride [12, 18] to

reduce the resolution of the feature maps. We experienced

inferior accuracy with max-pooling compared to that with

stride, probably because max-pooling introduces spatial in-

variance [27] that is not desired for this task. The feature
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Figure 6: Our iterative pose optimization in high-

dimensional space, schematized here in 2D. We start at an

initial pose (×) and want to converge to the ground truth

pose (◦), that maximizes image similarity. Our predictor

generates updates for each pose (+) that bring us closer.

The updates are predicted from the synthesized image of the

current pose estimate and the observed depth image. (Best

viewed in color)

maps of the two paths are concatenated and fed into a fully

connected network that outputs the update.

Ideally, the output of the updater should bring the pose

estimate to the correct pose in a single step. However, this

is a very difficult problem, and we could not get the net-

work to reduce the initial training error within a reasonable

timeframe. However, our only requirement from the up-

dater is for it to output an update which brings us closer

to the ground truth as shown in Fig. 6. We iterate this up-

date procedure to get closer step-by-step. Thus, the update

should follow the inequality

‖p+ updater(D, synth(p))− pGT‖2 < λ‖p− pGT‖2 ,

(7)

where pGT is the ground truth pose for image D, and

λ ∈ [0, 1] is a multiplicative factor that specifies a minimal

improvement. We use λ = 0.6 in our experiments.

We optimize the parameters Ω of the updater by mini-

mizing the following cost function

L =
∑

(D,p)∈T

∑

p′∈TD

max(0, ‖p′′−p‖2−λ‖p
′−p‖2) , (8)

where p′′ = p′ +updaterΩ(D, synth(p
′)), and TD is a set

of poses. The introduction of the synthesizer allows us to

virtually augment the training data and add arbitrary poses

to TD, which the updater is then trained to correct.

The set TD contains the ground truth p, for which the

updater should output a zero update. We further add as

many meaningful deviations from that ground truth as pos-

sible, which the updater might perceive during testing and

be asked to correct. We start by including the output pose of

the predictor pred(D), which during testing is used as ini-

tialization of the update loop. Additionally, we add copies
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Figure 4: Network architecture of the synthesizer used to generate depth images of hands given their poses. The input of the

network is the hand pose. The fully connected hidden layers create a 2048 dimensional latent representation at FC4 which is

reshaped into 32 feature maps of size 8×8. The feature maps are gradually enlarged by successive unpooling and convolution

operations. The last convolution layer combines the feature maps to derive a single depth image of size 128× 128. All layers

have rectified-linear units, except the last layer which has linear units. C denotes a convolutional layer with the number of

filters and the filter size inscribed, FC a fully connected layer with the number of neurons, and UP an unpooling layer with

the upscaling factor.
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Figure 5: Architecture of the updater. The network consists of two identical paths with shared weights that contain several

convolutional layers that use a filter stride to reduce the size of the feature maps. The final feature maps are concatenated and

fed into a fully connected network. All layers have rectified-linear units, except the last layer which has linear units. The pose

update is used to refine the initial pose and the refined pose is again fed into the synthesizer to iterate the whole procedure.

As in Fig. 4, C denotes a convolutional layer, and FC a fully connected layer.

with small Gaussian noise for all poses. This creates con-

vergence basins around the ground truth, in which the pre-

dicted updates point towards the ground truth, as we show in

the evaluation, and further helps to explore the pose space.

After every 2 epochs, we further augment the set by ap-

plying the current updater to the poses in TD, that is, we add

the set

{p2 | ∃p ∈ TD s.t. p2 = p+ updater(D, synth(p))}
(9)

to TD. This forces the updater to learn to further improve

on its own outputs.

In addition, we sample from the current distribution of

errors across all the samples, and add these errors to the

poses, thus explicitly focusing the training on common de-

viations. This is different from the Gaussian noise and helps

to predict correct updates for larger initialization errors.

4. Evaluation

In this section we evaluate our proposed method on the

NYU Hand Pose Dataset [35], a challenging real-world

benchmark for hand pose estimation. First, we describe

how we train the networks. Then, we introduce the eval-

uation metric and the benchmark dataset. Furthermore we

evaluate our method qualitatively and quantitatively.

4.1. Training

We optimize the networks’ parameters by using error

back-propagation and apply the rmsprop [34] algorithm.

We choose a decay parameter of 0.9 and truncate the gradi-

ents to 0.01. The batch size is 64. The learning rate decays

over the epochs and starts with 0.01 for the predictor and

synthesizer, and with 0.001 for the updater. The networks

are trained for 100 epochs.



Figure 7: The effects of erroneous annotations in the train-

ing data of [30]. The figures show input images together

with synthesized images which exhibit very blurry out-

lines and “ghost” fingers. The synthesizer learns the er-

roneous annotations and interpolates between inconsistent

ones, causing such artifacts that limit the applicability in

our method. (Best viewed on screen)

4.2. Hand Detection

We extract a fixed-size metric cube from the depth im-

age around the hand. The depth values within the cube are

resized to a 128 × 128 patch and normalized to [−1, 1].
The depth values are clipped to the cube sides front and

rear. Points for which the depth is undefined—which may

happen with structured light sensors for example—are as-

signed to the rear side. This preprocessing step was also

done in [30] and provides invariance to different hand-to-

camera distances.

4.3. Benchmark

We evaluated our method on the NYU Hand Pose

Dataset [35]. This dataset is publicly available, it is backed

up by a huge quantity of annotated samples together with

very accurate annotations. It also shows a high variability

of poses, however, which can make pose estimation chal-

lenging. While the ground truth contains J = 36 annotated

joints, we follow the evaluation protocol of [21, 35] and use

the same subset of J = 14 joints.

The training set contains samples of one person, while

the test set has samples from two persons. The dataset was

captured using a structured light RGB-D sensor, the Prime-

sense Carmine 1.09, and contains over 72k training and 8k

test frames. We used only the depth images for our experi-

ments. They exhibit typical artifacts of structured light sen-

sors: The outlines are noisy and there are missing depth

values along occluding boundaries.

We also considered other datasets for this task; unfor-

tunately, no further dataset was suitable. The dataset of

Tang et al. [30] has large annotation errors, that cause blurry

outlines and “ghost” fingers in the synthesized images as

shown in Fig. 7, which are not suitable for our method. The

datasets of [26, 29, 37] provide too little training data to

train meaningful models.

4.4. Comparison with Baseline

We show the benefit of using our proposed feedback

loop to increase the accuracy of the 3D joint localization.

For this, we compare to Tompson et al. [35], and to Ober-

weger et al. [21]. For [35], we augment their 2D joint loca-

tions with the depth from the depth images, as done in [35].

In case this estimate is outside the hand cube we assign

ground truth depth, thus favorably mitigating large errors

in those cases. For [21], we use their best CNN that incor-

porates a 30D pose embedding.

The quantitative comparison is shown in Fig. 8a. It

shows results using the metric of [33] which is generally

regarded as being very challenging. It denotes the fraction

of test samples that have all predicted joints below a given

maximum Euclidean distance from the ground truth. Thus

a single erroneous joint results in the deterioration of the

whole hand pose.

While the baseline of [35] and [21] have an average Eu-

clidean joint error of 21 mm and 20 mm respectively, our

proposed method reaches an error reduction to 16.5 mm,

thus achieving state-of-the-art on the dataset. The initial-

ization with the simple and efficient proposed predictor has

an error of 27 mm. We further show an evaluation of differ-

ent initializations in Fig. 8b. When we use a more complex

initialization [21] with an error of 23 mm, we can decrease

the average error to 16 mm. For a more detailed breakdown

of the error evaluation of each joint, we refer to the supple-

mentary material.

4.5. Image­Based Hand Pose Optimization

We mentioned in Section 3.1 that the attempt may

be made to estimate the pose by directly optimizing the

squared loss between the input image and the synthetic one

as given in Eq. (3) and we argued that this does not in fact

work well. We now demonstrate this empirically.

We used the powerful L-BFGS-B algorithm [5], which

is a box constrained optimizer, to solve Eq. (3). We set

the constraints on the pose in such a manner that each joint

coordinate stays inside the hand cube.

The minimizer of Eq. (3), however, does not correspond

to a better pose in general, as shown in Fig. 9. Although

the generated image looks very similar to the input image,

the pose does not improve, moreover it even often becomes

worse. Several reasons can account for this. The depth input

image typically exhibits noise along the contours, as in the

example of Fig. 9. After several iterations of L-BFGS-B,

the optimization may start corrupting the pose estimate with

the result that the synthesizer generates artifacts that fit the

noise. As shown in Fig. 10, the pose after optimization is

actually worse than the initial pose of the predictor.

Furthermore the optimization is prone to local minima

due to a noisy error surface [26]. However, we also tried

Particle Swarm Optimization [22, 26, 28] a genetic algo-

rithm popular for hand pose optimization, and obtained sim-

ilar results. This tends to confirm that the bad performance

comes from the objective function of Eq. (3) rather than the

optimization algorithm.
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Figure 8: Quantitative evaluation of pose optimization. Both figures show the fraction of frames where all joints are within

a maximum distance. A higher area under the curve denotes better results. In (a) we compare our method to the baseline of

Tompson et al. [35] and Oberweger et al. [21]. Although our initialization is worse than both baselines, we can boost the

accuracy of the joint locations using our proposed method. In (b) we compare different initializations. Init 1 is the simple

predictor presented in this work. We also use the more sophisticated model of [21], denoted as Init 2, for a more accurate

initialization. The better initialization helps obtain slightly more accurate results, however, our much simpler and faster

predictor is already sufficient for our method as initialization. (Best viewed on screen)

Init Init Iter 1 Iter 2 Final

Figure 9: Comparison with image-based pose optimization.

(Top) results for image-based optimization, and (bottom)

for our proposed method. From left to right: input depth

image with initial pose, synthesized image for initial pose,

after first, second iteration, and final pose. Minimizing

the difference between the synthesized and the input im-

age does not induce better poses. Thanks to the updater, our

method can fit a good estimate. (Best viewed on screen)

By contrast, in Fig. 12 we show the predicted updates

for different initializations around the ground truth joint lo-

cation with our updater. It predicts updates that move the

pose closer to the ground truth, for almost all initializations.

4.6. Qualitative results

Fig. 11 shows some qualitative examples. For some

examples, the predictor provides already a good pose,

which we can still improve, especially for the thumb. For
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Figure 10: Comparing image-based optimization and our

feedback loop. A higher area under the curve denotes bet-

ter results. The image-based optimization actually tends to

result in a deterioration of the initial pose estimate. Our

proposed optimization method performs significantly bet-

ter. (Best viewed in color)

worse initializations, also larger updates on the pose can be

achieved by our proposed method, to better explain the evi-

dence in the image.



Figure 11: Qualitative results for NYU dataset. We show the inferred joint locations on the depth images where the depth is

color coded in gray-scale. The individual fingers are color coded, where the bones of each finger share the same color, but

with a different hue. The left image of each pair shows the initialization and the right image shows the pose after applying

our method. Our method applies to a wide variety of poses and is tolerant to noise, occlusions and missing depth values as

shown in several images. (Best viewed on screen)

Figure 12: Predicted updates around ground truth joint posi-

tion, denoted as . We initialize noisy joint locations around

the ground truth location and show the pose updates as vec-

tors predicted by our updater. The start and end of the vec-

tors denote the initial and the updated 3D joint location. The

different updates bring us closer to the ground truth joint lo-

cation. (Best viewed on screen)

4.7. Runtime

Our method is implemented in Python using the Theano

library [2] and we run the experiments on a computer

equipped with an Intel Core i7, 16GB of RAM, and an

nVidia GeForce GTX 780 Ti GPU. Training takes about ten

hours for each CNN.

The runtime is composed of the discriminative initializa-

tion that takes 0.07 ms, the updater network takes 1.2 ms

for each iteration, and that already includes the synthesizer

with 0.8 ms. In practice we iterate our updater twice, thus

our method performs very fast at over 400 fps on a sin-

gle GPU. The runtime of our method compares favorably

with other model-based methods ranging between 12 and

60 fps [19, 22, 26, 29, 37].

5. Discussion and Conclusion

While our approach is not really biologically-inspired,

it should be noted that similar feedback mechanisms also

have the support of strong biological evidence. It has been

shown that feedback paths in the brain and especially in the

visual cortex actually consist of more neurons than the for-

ward path [7]. Their functional role remains mostly unex-

plained [4]; our approach could be a possible explanation in

the case of feedback in the visual cortex, but of course, this

would need to be proved.

It should also be noted that our predictor and our synthe-

sizer are trained with exactly the same data. One may then

ask how our approach can improve the first estimate made

by the predictor. The combination of the synthesizer and the

updater network provides us with the possibility for simply

yet considerably augmenting the training data to learn the

update of the pose: For a given input image, we can draw

arbitrary numbers of samples of poses through which the

updater is then trained to move closer to the ground-truth.

In this way, we can explore regions of the pose space which

are not present in the training data, but might be returned by

the predictor when applied to unseen images.

Finally, our approach has nothing really specific to the

hand pose detection or the use of a depth camera, since all

its components are learned, from the prediction of the ini-

tialization to the generation of images and the update com-

putation. The representation of the pose itself is also very

simple and does not have to take into account the specifics

of the structure of the hand. We therefore believe that, given

proper training data, our approach can be applied to many

detection and tracking problems and also with different sen-

sors.
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