
Hands Deep in Deep Learning for Hand Pose Estimation

Markus Oberweger Paul Wohlhart Vincent Lepetit

Institute for Computer Graphics and Vision

Graz University of Technology, Austria

{oberweger, wohlhart, lepetit}@icg.tugraz.at

Abstract.

We introduce and evaluate several architectures

for Convolutional Neural Networks to predict the 3D

joint locations of a hand given a depth map. We first

show that a prior on the 3D pose can be easily intro-

duced and significantly improves the accuracy and

reliability of the predictions. We also show how to

use context efficiently to deal with ambiguities be-

tween fingers. These two contributions allow us to

significantly outperform the state-of-the-art on sev-

eral challenging benchmarks, both in terms of accu-

racy and computation times.

1. Introduction

Accurate hand pose estimation is an important re-

quirement for many Human Computer Interaction or

Augmented Reality tasks, and has attracted lots of

attention in the Computer Vision research commu-

nity [10, 11, 14, 15, 17, 22, 23, 29]. Even with 3D

sensors such as structured-light or time-of-flight sen-

sors, it is still very challenging, as the hand has many

degrees of freedom, and exhibits self-similarity and

self-occlusions in images.

Given the current trend in Computer Vision, it is

natural to apply Deep Learning [18] to solve this

task, and a Convolutional Neural Network (CNN)

with a standard architecture performs remarkably

well when applied to this problem, as a simple ex-

periment shows. However, the layout of the network

has a strong influence on the accuracy of the out-

put [4, 21] and in this paper, we aim at identifying

the architecture that performs best for this problem.

More specifically, our contribution is two-fold:

• We show that we can learn a prior model of the

hand pose and integrate it seamlessly to the net-

work to improve the accuracy of the predicted

pose. This results in a network with an un-

usual “bottleneck”, i.e. a layer with fewer neu-

rons than the last layer.

• Like previous work [21, 27], we use a refine-

ment stage to improve the location estimates for

each joint independently. Since it is a regres-

sion problem, spatial pooling and subsampling

should be used carefully for this stage. To solve

this problem, we use multiple input regions cen-

tered on the initial estimates of the joints, with

very small pooling regions for the smaller in-

put regions, and larger pooling regions for the

larger input regions. Smaller regions provide

accuracy, larger regions provide contextual in-

formation.

We show that our original contributions allow

us to significantly outperform the state-of-the-art

on several challenging benchmarks [22, 26], both

in terms of accuracy and computation times. Our

method runs at over 5000 fps on a single GPU and

over 500 fps on a CPU, which is one order of magni-

tude faster than the state-of-the-art.

In the remainder of the paper, we first give a short

review of related work in Section 2. We introduce

our contributions in Section 3 and evaluate them in

Section 4.

2. Related Work

Hand pose estimation is an old problem in Com-

puter Vision, with early references from the nineties,

but it is currently very active probably because of the

appearance of depth sensors. A good overview of

earlier work is given in [6]. Here we will discuss

only more recent work, which can be divided into

two main approaches.

The first approach is based on generative, model-

based tracking methods. [15, 17] use a 3D hand

ar
X

iv
:1

50
2.

06
80

7v
1 

 [
cs

.C
V

] 
 2

4 
Fe

b 
20

15



model and Particle Swarm Optimization to handle

the large number of parameters to estimate. [14]

also considers dynamics simulation of the 3D model.

Several works rely on a tracking-by-synthesis ap-

proach: [5] considers shading and texture, [1] salient

points, and [29] depth images. All these works re-

quire careful initialization in order to guarantee con-

vergence and therefore rely on tracking based on the

last frames’ pose or separate initialization methods—

for example, [17] requires the fingertips to be vis-

ible. Such tracking-based methods have difficulty

handling drastic changes between two frames, which

are common as the hand tends to move fast.

The second type of approach is discriminative, and

aims at directly predicting the locations of the joints

from RGB or RGB-D images. For example, [11] and

[13] rely on multi-layered Random Forests for the

prediction. The former uses invariant depth features,

and the latter uses clustering in hand configuration

space and pixel-wise labelling. However, both do

not predict the actual 3D pose but only classify given

poses based on a dictionary. Motivated by work

for human pose estimation [20], [10] uses Random

Forests to perform a per-pixel classification of depth

images and then a local mode-finding algorithm to

estimate the 2D joint locations. However, this ap-

proach cannot directly infer the locations of hidden

joints, which are much more frequent for hands than

for the human body.

[23] proposed a semi-supervised regression forest,

which first classifies the hands viewpoint, then the

individual joints, to finally predict the 3D joint loca-

tions. However, it relies on a costly pixel-wise classi-

fication, and requires a huge training database due to

viewpoint quantization. The same authors proposed

a regression forest in [22] to directly regress the 3D

locations of the joints, using a hierarchical model of

the hand. However, their hierarchical approach ac-

cumulates errors, causing larger errors for the finger

tips.

Even more recently, [26] uses a CNN for feature

extraction and generates small “heatmaps” for joint

locations from which they infer the hand pose us-

ing inverse kinematics. However, their approach pre-

dicts only the 2D locations of the joints, and uses a

depth map for the third coordinate, which is prob-

lematic for hidden joints. Furthermore, the accuracy

is restricted to the heatmap resolution, and creating

heatmaps is computationally costly as the CNN has

to be evaluated at each pixel location.

The hand pose estimation problem is of course

closely related to the human body pose estimation

problem. To tackle this problem, [20] proposed per-

pixel semantic segmentation and regression forests

to estimate the 3D human body pose from a single

depth image. [9] recently showed it was possible to

do the same from RGB images only, by combined

body part labelling and iterative structured-output re-

gression for 3D joint localization. [27] recently pro-

posed a cascade of CNNs to directly predict and iter-

atively refine the 2D joint locations in RGB images.

Further, [25] used a CNN for part detection and a

simple spatial model, which however, is not effective

for high variations in pose space.

In our work, we build on the success of CNNs and

use them for their demonstrated performance. We

observe, that the structure of the network is very im-

portant. Thus we propose and investigate different

architectures to find the most appropriate one for the

hand pose estimation problem. We propose a net-

work structure that works very well, outperforming

the baselines on two difficult datasets.

3. Hand Pose Estimation with Deep Learning

In this section we present our original contribu-

tions to the hand pose estimation problem. We first

briefly introduce the problem and a simple 2D hand

detector, which we use to get a coarse bounding box

of the hand as input to the CNN-based pose predic-

tors.

Then we describe our general approach which

consists of two stages. For the first stage we con-

sider different architectures that predict the locations

of all joints simultaneously. Optionally, this stage

can predict the pose in a lower-dimensional space,

which is described next. Finally, we detail the sec-

ond stage, which refines the locations of the joints

independently from the predictions made at the first

stage.

3.1. Problem Formulation

We want to estimate the J 3D hand joint locations

J = {ji}
J

i=1
with ji = (xi, yi, zi) from a single depth

image. We assume that a training set of depth im-

ages labeled with the 3D joint locations is available.

To simplify the regression task, we first estimate a

coarse 3D bounding box containing the hand using a

simple method similar to [22], by assuming the hand

is the closest object to the camera: We extract from

the depth map a fixed-size cube centered on the cen-



ter of mass of this object, and resize it to a 128× 128
patch of depth values normalized to [−1, 1]. Points

for which the depth is not available—which may hap-

pen with structured light sensors for example—or are

deeper than the back face of the cube, are assigned a

depth of 1. This normalization is important for the

CNN in order to be invariant to different distances

from the hand to the camera.

3.2. Network Structures for Predicting the Joints’

3D Locations

We first considered two standard CNN architec-

tures. The first one is shown in Fig. 1a, and is a sim-

ple shallow network, which consists of a single con-

volutional layer, a max-pooling layer, and a single

fully-connected hidden layer. The second architec-

ture we consider is shown in Fig. 1b and is a deeper

but still generic network [12, 27], with three convolu-

tional layers followed by max-pooling layers and two

fully-connected hidden layers. All layers use Recti-

fied Linear Unit [12] activation functions.

Additionally, we evaluated a multi-scale ap-

proach, as done for example in [7, 19, 25]. The moti-

vation for this approach is that using multiple scales

may help capturing contextual information. It uses

several downscaled versions of the input image as in-

put to the network, as shown in Fig. 1c.

Our results will show that, unsurprisingly, the

multi-scale approach performs better than the deep

architecture, which performs better than the shallow

one. However, our contributions, described in the

next two sections, bring significantly more improve-

ment.

3.3. Enforcing a Prior on the 3D Pose

So far we only considered predicting the 3D posi-

tions of the joints directly. However, given the phys-

ical constraints over the hand, there are strong cor-

relation between the different 3D joint locations, and

previous work [28] has shown that a low dimensional

embedding is sufficient to parameterize the hand’s

3D pose. Instead of directly predicting the 3D joint

locations, we can therefore predict the parameters

of the pose in a lower dimensional space. As this

enforces constraints of the hand pose, it can be ex-

pected that it improves the reliability of the predic-

tions, which will be confirmed by our experiments.

As shown in Fig. 1d, we implement the pose prior

into the network structure by introducing a “bottle-

neck” in the last layer. This bottleneck is a layer with

less neurons than necessary for the full pose repre-

sentation, i.e. ≪ 3 · J . It forces the network to learn

a low dimensional representation of the training data,

that implements the physical constraints of the hand.

Similar to [28], we rely on a linear embedding. The

embedding is enforced by the bottleneck layer and

the reconstruction from the embedding to pose space

is integrated as a separate hidden layer added on top

of the bottleneck layer. The weights of the recon-

struction layer are set to compute the back-projection

into the 3 · J-dimensional joint space. The resulting

network therefore directly computes the full pose.

We initialize the reconstruction weights with the ma-

jor components from a Principal Component Analy-

sis of the hand pose data and then train the full net-

work using back-propagation. Using this approach

we train the networks described in the previous sec-

tion.

The embedding can be as small as 8 dimensions

for a 42-dimensional pose vector to fully represent

the 3D pose as we show in the experiments.

3.4. Refining the Joint Location Estimates

The previous architectures provide estimates for

the locations of all the joints simultaneously. As done

in [21, 27], these estimates can then be refined inde-

pendently.

Spatial context is important for this refinement

step to avoid confusion between the different fingers.

The best performing architecture we experimented

with is shown in Fig. 2a. We will refer to this archi-

tecture as ORRef, for Refinement with Overlapping

Regions. It uses as input several patches of different

sizes but all centered on the joint location predicted

by the first stage. No pooling is applied to the small-

est patch, and the size of the pooling regions then in-

creases with the size of the patch. The larger patches

provide more spatial context, whereas the absence of

pooling on the small patch enables better accuracy.

We also considered a standard CNN architecture

as a baseline, represented in Fig. 1b, which relies on

a single input patch. We will refer to this baseline as

StdRef, for Refinement with Standard Architecture.

To further improve the accuracy of the location es-

timates, we iterate this refinement step several times,

by centering the network on the location predicted at

the previous iteration.



(a) (b)

(c) (d)

Figure 1: Different network architectures for the first stage. C denotes a convolutional layer with the number of filters

and the filter size inscribed, FC a fully connected layer with the number of neurons, and P a max-pooling layer with the

pooling size. We evaluated the performance of a shallow network (a) and a deeper network (b), as well as a multi-scale

architecture (c), which was used in [7, 19]. This architecture extracts features after downscaling the input depth map by

several factors. (d) All these networks can be extended to incorporate the constrained pose prior. This causes an unusual

bottleneck with less neurons than the output layer.

(a) (b)

Figure 2: Our architecture for refining the joint locations during the second stage. We use a different network for each

joint, to refine its location estimate as provided by the first stage. (a) The architecture we propose uses overlapping inputs

centered on the joint to refine. Pooling with small regions is applied to the smaller inputs, while the larger inputs are

pooled with larger regions. The smaller inputs allow for higher accuracy, the larger ones provide contextual information.

We experimentally show that this architecture is more accurate than a more standard network architecture. (b) shows a

generic architecture of an iterative refinement, where the output of the previous iteration is used as input for the next. As

for Fig. 1, C denotes a convolutional layer, FC a fully connected layer, and P a max-pooling layer. (Best viewed in color)

4. Evaluation

In this section we evaluate the different archi-

tectures introduced in the previous section on sev-

eral challenging benchmarks. We first introduce

these benchmarks and the parameters of our meth-

ods. Then we describe the evaluation metric, and

finally we present the results, quantitatively as well

as qualitatively. Our results show that our differ-

ent contributions significantly outperform the state-

of-the-art.



4.1. Benchmarks

We evaluated our methods on the two following

datasets:

NYU Hand Pose Dataset [26]: This dataset con-

tains over 72k training and 8k test frames of RGB-

D data captured using the Primesense Carmine 1.09.

It is a structured light-based sensor and the depth

maps have missing values mostly along the occluding

boundaries as well as noisy outlines. For our exper-

iments we use only the depth data. The dataset has

accurate annotations and exhibits a high variability

of different poses. The training set contains samples

from a single user and the test set samples from two

different users. The ground truth annotations contain

J = 36 joints, however [26] uses only J = 14 joints,

and we did the same for comparison purposes.

ICVL Hand Posture Dataset [22]: This dataset

comprises a training set of over 180k depth images

showing various hand poses. The test set contains

two sequences with each approximately 700 depth

maps. The dataset is recorded using a time-of-flight

Intel Creative Interactive Gesture Camera and has

J = 16 annotated joints. Although the authors pro-

vide different artificially rotated training samples, we

only use the genuine 22k. The depth images have

a high quality with hardly any missing depth val-

ues, and sharp outlines with little noise. However,

the pose variability is limited compared to the NYU

dataset. Also, a relatively large number of samples

both from the training and test sets are incorrectly

annotated: We evaluated the accuracy and about 36%

of the poses from the test set have an annotation error

of at least 10 mm.

4.2. Meta­Parameters and Optimization

The performance of neural networks depends on

several meta-parameters, and we performed a large

number of experiments varying the meta-parameters

for the different architectures we evaluated. We re-

port here only the results of the best performing sets

of meta-parameters for each method. However, in

our experiments, the performance depends more on

the architecture itself than on the values of the meta-

parameters.

We trained the different architectures by minimiz-

ing the distance between the prediction and the ex-

pected output per joint, and a regularization term for

weight decay to prevent over-fitting, where the regu-

larization factor is 0.001. We do not differ between

occluded and non-occluded joints. Because the an-

notations are noisy, we use the robust Huber loss [8]

to evaluate the differences. The networks are trained

with back-propagation using Stochastic Gradient De-

scent [3] with a batch size of 128 for 100 epochs. The

learning rate is set to 0.01 and we use a momentum

of 0.9 [16].

4.3. Evaluation Metrics

We use two different evaluation metrics:

• the average Euclidean distance between the pre-

dicted 3D joint location and the ground truth,

and

• the fraction of test samples that have all pre-

dicted joints below a given maximum Euclidean

distance from the ground truth, as was done

in [24]. This metric is generally regarded very

challenging, as a single dislocated joint deterio-

rates the whole hand pose.

4.4. Importance of the Pose Prior

In Fig. 3a and 3c we compare different embed-

ding dimensions and direct regression in the full

3 · J-dimensional pose space for the NYU and the

ICVL dataset, respectively. The evaluation on both

datasets shows that enforcing a pose prior is bene-

ficial compared to direct regression in the full pose

space. Only 8 dimensions out of the original 42-

or 48-dimensional pose spaces are already enough

to capture the pose and outperform the baseline on

both datasets. However, the 30-dimensional embed-

ding performs best, and thus we use this for all fur-

ther evaluations. The results on the ICVL dataset,

which has noisy annotations, are not as drastic, but

still consistent with the results on the NYU dataset.

The baseline on the NYU dataset of Tompson et

al. [26] only provide the 2D locations of the joints.

For comparison, we follow their protocol and aug-

ment their 2D locations by taking the depth of each

joint directly from the depth maps to derive com-

parable 3D locations. Depth values that do not lie

within the hand cube are truncated to the cube’s back

face to avoid large errors. This protocol, however,

has a certain influence on the error metric, as evident

in Fig. 4a. The augmentation works well for some

joints, as apparent by the average error. However,

it is unlikely that the augmented depth is correct for



0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100

Fr
ac

tio
n 

of
 fr

am
es

 w
ith

in
 d

is
ta

nc
e 

/ %

Tompson et al.
Deep

Deep-Prior 8D
Deep-Prior 15D

Deep-Prior 30D

(a) Pose Prior on NYU dataset

0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100

Fr
ac
tio

n 
of
 fr
am

es
 w
ith

in
 d
is
ta
nc
e 
/ %

Tompson et al.
Deep

Deep-StdRef
Deep-ORRef

Deep-Prior-StdRef
Deep-Prior-ORRef

(b) Refinement on NYU dataset

0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100

Fr
ac

tio
n 
of
 fr

am
es

 w
ith

in
 d
is
ta
nc

e 
/ %

Tang et al.
Deep

Deep-Prior 8D
Deep-Prior 15D

Deep-Prior 30D

(c) Pose Prior on ICVL dataset

0 10 20 30 40 50 60 70 80
Distance threshold / mm

0

20

40

60

80

100
Fr
ac
tio

n 
of
 fr
am

es
 w
ith

in
 d
is
ta
nc
e 
/ %

Tang et al.
Deep

Deep-StdRef
Deep-ORRef

Deep-Prior-StdRef
Deep-Prior-ORRef

(d) Refinement on ICVL dataset

Figure 3: Importance of the pose prior (left) and the refinement stage (right). We evaluate the fraction of frames where

all joints are within a maximum distance for different approaches. A higher area under the curve denotes more accurate

results. Left (a), (c): We show the influence of the dimensionality of the pose embedding. The optimal value is around

30, but using only 8 dimensions performs already very well. The pose prior allows us to significantly outperform the

state-of-the-art, even before the refinement step. Right (b), (d): We show that our architecture with overlapping input

patches, denoted by the ORRef suffix, provides higher accuracy for refining the joint positions compared to a standard

deep CNN, denoted by the StdRef suffix. For the baseline of Tompson et al. [26] we augment their 2D joint locations with

the depth from the depth maps, as done by [26], and depth values that do not lie within the hand cube are truncated to the

cube’s back face to avoid large errors. (Best viewed on screen)

all joints of the hand, e.g. the 2D joint location lies

on the background or is self-occluded, thus causing

higher errors for individual joints. When using the

evaluation metric of [24], where all joints have to be

within a maximum distance, this outlier has a strong

influence, in contrast to the evaluation of the average

error, where an outlier can be insignificant for the

mean. Thus we outperform the baseline more signif-

icantly for the distance threshold than for the average

error.

4.5. Increasing Accuracy with Pose Refinement

The refinement stage can be used to further in-

crease the location accuracy of the predicted joints.

We achieved the highest accuracy by using our CNN

with constrained prior hand model as first stage, and



then applying the second iterative refinement stage

with our CNN with overlapping input patches, de-

noted ORRef.

The results in Fig. 3b, 3d and 4 show that apply-

ing the refinement improves the location accuracy for

different base CNNs. From rather inaccurate initial

estimates, as provided by the standard deep CNN,

our proposed ORRef performs only slightly better

than refinement with the baseline deep CNN, denoted

by StdRef. This is because for large initial errors only

the larger input patch provides enough context for

reasoning about the offset. The smaller input patch

cannot provide any information if the offset is big-

ger than the patch size. For more accurate initial

estimates, as provided by our deep CNN with pose

prior, the ORRef takes advantage from the small in-

put patch which does not use pooling for higher ac-

curacy. We iterate our refinement two times, since

iterating more often does not provide any further in-

crease in accuracy.

We would like to emphasize that our results on

the ICVL dataset, with an average accuracy below

10 mm, already scratch at the uncertainty of the la-

belled annotations. As already mentioned, the ICVL

dataset suffers from inaccurate annotations, as we

show in some qualitative samples in Fig. 5 first and

fourth column. While this has only a minor effect on

training, the evaluation is more affected. We evalu-

ated the accuracy of the test sequence by revising the

annotations in image space and calculated an average

error of 2.4 mm with a standard deviation of 5.2 mm.

4.6. Running Times

Table 1 provides a comparison of the running

times of the different methods, both on CPU and

GPU. They were measured on a computer equipped

with an Intel Core i7, 16GB of RAM, and an nVidia

GeForce GTX 780 Ti GPU. Our methods are imple-

mented in Python using the Theano library [2], which

offers an option to select between the CPU and the

GPU for evaluating CNNs. Our different models per-

form very fast, up to over 5000 fps on a single GPU.

Training takes about five hours for each CNN. The

deep network with pose prior performs very fast and

outperforms all other methods in terms of accuracy.

However, we can further refine the joint locations at

the cost of higher runtime.

4.7. Qualitative Results

We present qualitative results in Fig. 5. The typi-

cal problems of structured light-based sensors, such

Architecture GPU CPU

Shallow 0.07 ms 1.85 ms

Deep [12] 0.1 ms 2.08 ms

Multi-Scale [7] 0.81 ms 5.36 ms

Deep-Prior 0.09 ms 2.29 ms

Refinement 2.38 ms 62.91 ms

Tompson et al. [26] 5.6 ms -

Tang et al. [22] - 16 ms

Table 1: Comparison of different runtimes. Our CNN with

pose prior (Deep-Prior) is faster by a magnitude com-

pared to the other methods (pose estimation only). We can

further increase the accuracy using the refinement stage,

still at competitive speed. All of the denoted baselines use

state-of-the-art hardware comparable to ours.

as missing depth, can be problematic for accurate lo-

calization. However, only partially missing parts, as

shown in the third and fourth columns for example,

do not significantly deteriorate the result. The loca-

tion of the joint is constrained by the learned hand

model. If the missing regions get too large, as shown

in the fifth column, the accuracy gets worse. How-

ever, because of the use of the pose subspace embed-

ding, the predicted joint locations still preserve the

learned hand topology. The erroneous annotations of

the ICVL dataset deteriorate the results, as our pre-

dicted locations during the first stage are sometimes

more accurate than the ones obtained during the sec-

ond stage: see for example the pinky in the first or

fourth column.

5. Conclusion

We evaluated different network architectures for

hand pose estimation by directly regressing the 3D

joint locations. We introduced a constrained prior

hand model that can significantly improve the joint

localization accuracy. Further, we applied a joint-

specific refinement stage to increase the localization

accuracy. We have shown, that for this refinement a

CNN with overlapping input patches with different

pooling sizes can benefit from both, input resolution

and context. We have compared the architectures on

two datasets and shown that they outperform previ-

ous state-of-the-art both in terms of localization ac-

curacy and speed.

Acknowledgements: This work was funded by the

Christian Doppler Laboratory for Handheld Aug-

mented Reality and the TU Graz FutureLabs fund.



P1 P2 R1 R2 M1 M2 I1 I2 C T1 T2 T3 W1 W2 Avg
0

10

20

30

40

50
M
ea

n 
er
ro
r o

f j
oi
nt
 / 
m
m

Tompson et al.
Shallow

Deep
Multi-Scale

Deep-Prior-ORRef

(a) NYU dataset

C T1 T2 T3 I1 I2 I3 M1 M2 M3 R1 R2 R3 P1 P2 P3 Avg
0

5

10

15

20

25

M
ea

n 
er

ro
r o

f j
oi

nt
 / 

m
m

Tang et al.
Shallow

Deep
Multi-Scale

Deep-Prior-ORRef

(b) ICVL dataset

Figure 4: Average joint errors. For completeness and comparability we show the average joint errors, which are, however,

not as decisive as the evaluation in Fig. 3. Though, the results are consistent. The evaluation of the average error is more

tolerant to larger errors of a single joint, which deteriorate the pose as for Fig. 3, but are insignificant for the mean if

the other joints are accurate. Our proposed architecture Deep-Prior-ORRef, the constrained pose CNN with refinement

stage, provides the highest accuracy. For the ICVL dataset, the simple baseline architectures already outperform the

baseline. However, they cannot capture the higher variations in pose space and noisy images of the NYU dataset, where

they perform much worse. The palm and fingers are indexed as C: palm, T: thumb, I: index, M: middle, R: ring, P: pinky,

W: wrist. (Best viewed on screen)

NYU dataset ICVL dataset

D
ee

p
-P

ri
o
r

D
ee

p
-O

R
R

ef

Figure 5: Qualitative results. We show the inferred joint locations on the depth images (in gray-scale), as well as the

3D locations with the point cloud of the hand (blue images) from a different angle. The ground truth is shown in blue,

our results in red. The point cloud is only annotated with our results for clarity. The right columns show some erroneous

results. One can see the difference between the global constrained pose and the local refinement, especially in the presence

of missing depth values as shown in the fifth column. While the global pose constraint still preserves the hand topology,

the local refinement cannot reason about the locations without the missing depth data. (Best viewed on screen)



References

[1] L. Ballan, A. Taneja, J. Gall, L. V. Gool, and

M. Pollefeys. Motion Capture of Hands in Action

Using Discriminative Salient Points. In European

Conference on Computer Vision, 2012.

[2] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin,

R. Pascanu, G. Desjardins, J. Turian, D. Warde-

Farley, and Y. Bengio. Theano: A CPU and GPU

Math Expression Compiler. In Proc. of SciPy, 2010.

[3] L. Bottou. Large-Scale Machine Learning with

Stochastic Gradient Descent. In Proc. of COMP-

STAT, 2010.

[4] A. Coates, A. Y. Ng, and H. Lee. An Analysis

of Single-Layer Networks in Unsupervised Feature

Learning. In Proc. of AISTATS, 2011.

[5] M. de La Gorce, D. J. Fleet, and N. Paragios. Model-

Based 3D Hand Pose Estimation from Monocular

Video. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 33(9), 2011.

[6] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and

X. Twombly. Vision-Based Hand Pose Estimation:

A Review. Computer Vision and Image Understand-

ing, 108(1-2), 2007.

[7] C. Farabet, C. Couprie, L. Najman, and Y. LeCun.

Learning Hierarchical Features for Scene Labeling.

IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2013.

[8] P. J. Huber. Robust Estimation of a Location Param-

eter. Annals of Statistics, 53, 1964.

[9] C. Ionescu, J. Carreira, and C. Sminchisescu. Iter-

ated Second-Order Label Sensitive Pooling for 3D

Human Pose Estimation. In Conference on Com-

puter Vision and Pattern Recognition, 2014.

[10] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun.

Real Time Hand Pose Estimation Using Depth Sen-

sors. In International Conference on Computer Vi-

sion, 2011.

[11] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun. Hand

Pose Estimation and Hand Shape Classification Us-

ing Multi-Layered Randomized Decision Forests. In

European Conference on Computer Vision, 2012.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-

agenet Classification with Deep Convolutional Neu-

ral Networks. In Advances in Neural Information

Processing Systems, 2012.

[13] A. Kuznetsova, L. Leal-taixe, and B. Rosenhahn.

Real-Time Sign Language Recognition Using a

Consumer Depth Camera. In International Confer-

ence on Computer Vision, 2013.

[14] S. Melax, L. Keselman, and S. Orsten. Dynam-

ics Based 3D Skeletal Hand Tracking. In Proc. of

Graphics Interface Conference, 2013.

[15] I. Oikonomidis, N. Kyriazis, and A. A. Argyros.

Full DOF Tracking of a Hand Interacting with an

Object by Modeling Occlusions and Physical Con-

straints. In International Conference on Computer

Vision, 2011.

[16] B. T. Polyak. Some Methods of Speeding Up the

Convergence of Iteration Methods. USSR Computa-

tional Mathematics and Mathematical Physics, 4(5),

1964.

[17] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Re-

altime and Robust Hand Tracking from Depth. In

Conference on Computer Vision and Pattern Recog-

nition, 2014.

[18] J. Schmidhuber. Deep Learning in Neural Net-

works: An Overview. Technical Report 03-14, ID-

SIA, 2014.

[19] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu,

R. Fergus, and Y. LeCun. Overfeat: Integrated

Recognition, Localization and Detection Using Con-

volutional Networks. In Proc. of ICRL, 2014.

[20] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp,

M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Cri-

minisi, A. Kipman, and A. Blake. Efficient Human

Pose Estimation from Single Depth Images. In Con-

ference on Computer Vision and Pattern Recogni-

tion, 2011.

[21] Y. Sun, X. Wang, and X. Tang. Deep Convolutional

Network Cascade for Facial Point Detection. In

Conference on Computer Vision and Pattern Recog-

nition, 2013.

[22] D. Tang, H. J. Chang, A. Tejani, and T.-K. Kim. La-

tent Regression Forest: Structured Estimation of 3D

Articulated Hand Posture. In Conference on Com-

puter Vision and Pattern Recognition, 2014.

[23] D. Tang, T. Yu, and T. Kim. Real-Time Articu-

lated Hand Pose Estimation Using Semi-Supervised

Transductive Regression Forests. In International

Conference on Computer Vision, 2013.

[24] J. Taylor, J. Shotton, T. Sharp, and A. Fitzgib-

bon. The Vitruvian Manifold: Inferring Dense Cor-

respondences for One-Shot Human Pose Estima-

tion. In Conference on Computer Vision and Pattern

Recognition, 2012.

[25] J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint

Training of a Convolutional Network and a Graphi-

cal Model for Human Pose Estimation. In Advances

in Neural Information Processing Systems, 2014.

[26] J. Tompson, M. Stein, Y. LeCun, and K. Perlin.

Real-Time Continuous Pose Recovery of Human

Hands Using Convolutional Networks. ACM Trans-

actions on Graphics, 33, 2014.

[27] A. Toshev and C. Szegedy. DeepPose: Human Pose

Estimation via Deep Neural Networks. In Confer-

ence on Computer Vision and Pattern Recognition,

2014.

[28] Y. Wu, J. Lin, and T. Huang. Capturing Natural

Hand Articulation. In International Conference on

Computer Vision, 2001.



[29] C. Xu and L. Cheng. Efficient Hand Pose Estima-

tion from a Single Depth Image. In International

Conference on Computer Vision, 2013.


	1 . Introduction
	2 . Related Work
	3 . Hand Pose Estimation with Deep Learning
	3.1 . Problem Formulation
	3.2 . Network Structures for Predicting the Joints' 3D Locations
	3.3 . Enforcing a Prior on the 3D Pose
	3.4 . Refining the Joint Location Estimates

	4 . Evaluation
	4.1 . Benchmarks
	4.2 . Meta-Parameters and Optimization
	4.3 . Evaluation Metrics
	4.4 . Importance of the Pose Prior
	4.5 . Increasing Accuracy with Pose Refinement
	4.6 . Running Times
	4.7 . Qualitative Results

	5 . Conclusion

