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Abstract

We propose a novel approach to point matching under large

viewpoint and illumination changes that is suitable for ac-

curate object pose estimation at a much lower computa-

tional cost than state-of-the-art methods.

Most of these methods rely either on using ad hoc local

descriptors or on estimating local affine deformations. By

contrast, we treat wide baseline matching of keypoints as a

classification problem, in which each class corresponds to

the set of all possible views of such a point. Given one or

more images of a target object, we train the system by syn-

thesizing a large number of views of individual keypoints

and by using statistical classification tools to produce a

compact description of this view set. At run-time, we rely

on this description to decide to which class, if any, an ob-

served feature belongs. This formulation allows us to use

a classification method to reduce matching error rates, and

to move some of the computational burden from matching

to training, which can be performed beforehand.

In the context of pose estimation, we present experimen-

tal results for both planar and non-planar objects in the

presence of occlusions, illumination changes, and cluttered

backgrounds. We will show that our method is both reliable

and suitable for initializing real-time applications.

1. Introduction

While there are many effective approaches to tracking, they

all require an initial pose estimate, which remains difficult

to provide automatically, fast and reliably. Among meth-

ods that can be used for this purpose, those based on feature

point matching have become popular since the pioneering

work of Schmid and Mohr [1] because this approach ap-

pears to be more robust to scale, viewpoint, illumination

changes and partial occlusions than edge or eigen-image

based ones. Recently, impressive wide-baseline matching✄
This work was supported in part by the Swiss Federal Office for Edu-
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results have been obtained [2, 3, 4, 5, 6], which make this

approach even more attractive.

These wide baseline matching methods, however, are

typically designed to match two images but not to take

advantage of the fact that, for pose estimation purposes,

both a 3D object model and several training images may

be available. In this paper, we propose a method that al-

lows us to use this additional information to build compact

descriptors that allow recognition of key feature points at a

much reduced computational cost at run-time, without loss

of matching performance. It also allows to relax the locally

planar assumption. We will demonstrate this approach both

on piecewise planar objects, such as books or boxes, and

non-planar objects such as faces.

The key ingredient of our approach is to treat wide base-

line matching of feature points as a classification problem,

in which each class corresponds to the set of all possible

views of such a point. During training, given at least one

image of the target object, we synthesize a large number of

views of individual keypoints. If the object can be assumed

to be locally planar, this is done by simply warping image

patches around the points under affine or homographic de-

formations. Otherwise, given the 3D model, we use stan-

dard Computer Graphics texture-mapping techniques. This

second approach is more complex but relaxes the planarity

assumptions. At run-time, we can then use powerful and

fast classification techniques to decide to which view set,

if any, an observed feature belongs, which is as effective

and much faster than the usual way of computing local de-

scriptors and comparing their responses. Once potential

correspondences have been established between the inter-

est points of the input image and those lying on the object,

we apply a standard RANSAC-based method to estimate

3D pose. In Figure 1, we show how it can be used to initial-

ize a 3D tracker we developed in previous work [7], and to

re-initialize if it loses track.

Here, we do not focus on interest point extraction and

use the Harris corner detector for our experiments. A more
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Figure 1: Automated pose estimation of a box to initialize

a 3D tracker. (a): One of the training images; (b): An in-

put image in which the box is automatically detected and

its pose estimated; (c) and (d): Feature points are tracked

to register the camera, even in case of partial occlusions;

(e): The tracker fails because of a complete occlusion of the

tracked object, the failure is detected and the initialization

procedure is reinvoked; (f): This procedure recognizes the

object when it reappears.

advanced detector such as the one described in [8] could

be used instead. It is therefore noteworthy that we never-

theless obtain excellent results, which can be attributed to

the fact that our method tolerates imprecision in point lo-

calization. In short, this paper introduces a novel approach

to point matching that goes a long way towards reducing the

computational burden, thus making it suitable for fast object

recognition under viewpoint and illumination changes.

In the remainder of the paper, we first discuss related

work. We introduce our approach in Section 3 and present

our results in Section 4. We conclude with our plans for

future work.

2. Related Work

In the area of automated 3D object detection, we can distin-

guish between “Global” and “Local” approaches.

Global ones use statistical classification techniques to

compare an input image to several training images of an

object of interest and decide whether or not it appears in

this input image. The methods used range from relatively

simple methods such as Principal Component Analysis and

Nearest Neighbor search [9] to more sophisticated ones

such as AdaBoost and classifiers cascade to achieve real-

time detection of human faces at varying scales [10]. Such

approaches, however, are not particularly good at handling

occlusions, cluttered backgrounds, or the fact that the pose

of the target object may be very different from the ones in

the training set. Furthermore, these global methods cannot

provide accurate 3D pose estimation.

By contrast, local approaches use simple 2D features

such as corners or edges [11], which makes them resis-

tant to partial occlusions and cluttered backgrounds: Even if

some features are missing, the object can still be detected as

long as enough are found and matched. Spurious matches

can be removed by enforcing geometric constraints, such

as epipolar constraints between different views or full 3D

constraints if an object model is available [12].

For local approaches to be effective, feature point extrac-

tion and characterization should be insensitive to viewpoint

and illumination changes. Scale-invariant feature extraction

can be achieved by using the Harris detector [13] at several

Gaussian derivative scales, or by considering local optima

of pyramidal difference-of-Gaussian filters in scale-space

[8]. Mikolajczyck et al. [4] have also defined an affine in-

variant point detector to handle larger viewpoint changes,

that have been used for 3D object recognition [14], but it

relies on an iterative estimation that would be too slow for

our purposes.

Given the extracted feature points, various local descrip-

tors have been proposed: Schmid and Mohr [1] compute

rotation invariant descriptors as functions of relatively high

order image derivatives to achieve orientation invariance.

Baumberg [3] uses a variant of the Fourier-Mellin transfor-

mation to achieve rotation invariance. He also gives an algo-

rithm to remove stretch and skew and obtain an affine invari-

ant characterization. Allezard et al. [12] represent the key

point neighborhood by a hierarchical sampling, and rotation

invariance is obtained by starting the circular sampling with

respect to the gradient direction. Tuytelaars and al. [2] fit an

ellipse to the texture around local intensity extrema and use

the Generalized Color Moments [15] to obtain correspon-

dences remarkably robust to viewpoint changes. Lowe [6]

introduces a descriptor called SIFT based on several orien-

tation histograms, that is not fully affine invariant but toler-

ates significant local deformations. This last descriptor has

been shown in [16] to be one of the most efficient, which is

why we compare our results against it in the Section 4.

In short, local approaches have been shown to work well

on highly textured objects, to handle partial occlusions, and

to tolerate errors in the correspondences. However, even if

they can be used for object detection and pose estimation,

they rely on relatively expensive point matching between a

sample and an input image. By contrast, our approach is
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geared towards shifting much of the computational burden

to a training phase during which we build descriptors from

the set of sample images and, as a result, reducing the cost

of online matching while increasing its robustness.

3. Feature Point Matching as a Classi-

fication Problem

3.1. Approach

Matching interest points found in an input image against

feature points on a target object ☎ can be naturally formu-

lated as a classification problem as follows. During train-

ing, we construct a set ✆✞✝ of ✟ prominent feature points

lying on ☎ . Given an input patch ✠☛✡✌☞ , the space of all

image patches of a given size, we want to decide whether

or not it can be an image of one of the ✟ interest points.

In other words, we want to assign to ✠ a class label in✍✏✎ ✠✒✑✓✡✕✔✗✖✙✘✛✚✢✜✤✣✥✜✤✣✧✦★✣✪✩✥✩✪✩✫✣✬✟✮✭ , where the ✚✢✜ label de-

notes all the points that do not belong to the object — the

background.
✍

cannot be directly observed, but our goal is

to construct a classifier ✯✍✱✰ ☞✳✲✴✔ such as ✵ ✎✶✍✸✷✖✹✯✍ ✑ is

small.

In other recognitions tasks, such as face or character

recognition, large training sets of labeled data are usually

available. However, for automated pose estimation, it would

be impractical to require very large number of sample im-

ages. Instead, to achieve robustness with respect to pose

and complex illumination changes, we use a small number

of images and synthesize many new views of the feature

points in ✆ ✝ using simple rendering techniques to train our

classifier.

For each feature point, this constitutes a sampling of its

view set, that is the set of all its possible appearances un-

der different viewing conditions. We can then use statistical

classification techniques to describe them compactly and,

finally, use these descriptors to perform the actual classifi-

cation at run-time. This gives us a set of matches that lets

us to estimate the pose.

3.2. Creating View Sets

Constructing the viewset of points is relatively simple, and

we focus here on some of the implementation details that

ensure invariance to illumination changes and also robust-

ness to point localization error that can occur while extract-

ing the feature points.

3.2.1 Construction Under Local Planarity Assump-

tions

For a given point in the training image, if the surface can

be assumed to be locally planar, a new view of its neighbor-

hood can be synthesized by warping using an affine trans-

Figure 2: The patch around a keypoint detected in the train-

ing image of a book cover, and two patches synthesized us-

ing random affine transformations.

formation, that approximates the actual homography:

✎✻✺ ✚ ✺✽✼ ✑✾✖❀✿ ✎✶❁ ✚ ❁❂✼ ✑❄❃❆❅ (1)

where
❁❂✼

are the coordinates of the keypoint detected in

the training image,
✺❇✼

are the coordinates of the patch cen-

ter, and
✺

the new coordinates of the warped point
❁

. The

matrix ✿ can be decomposed as: ✿❈✖❀❉❋❊●❉■❍❑❏▲◆▼ ❉ ▲ , where❉❖❊ and ❉ ▲ are two rotation matrices respectively parame-

terized by the angles P and ◗ , and ▼ ✖ diag ❘ ❙ ❏ ✣❚❙❱❯●❲ is a

scaling matrix; ❅❳✖❨❘ ❩❭❬❪✣❫❩❭❴✪❲❛❵ is a 2D translation vector [17].

The view set is created by generating the views cor-

responding to a regular sampling of the space of the✎ P❜✣❚◗✽✣✧❙ ❏ ✣❚❙ ❯ ✣❫❩ ❬ ✣❫❩ ❴ ✑ parameters. As discussed below, we

use non null values of ❅ to handle possible localization error

of the keypoints.

3.2.2 Robustness To Localization Error

When a keypoint is detected in two different images, its pre-

cise location may shift a bit due to image noise or viewpoint

changes. In practice, such a positional shift results in large

errors of direct cross-correlation measures. One solution is

to iteratively refine the point localization [4]. The keypoint

descriptor in [8] handles this problem by carefully assur-

ing that a gradient vector contributes to the same local his-

togram even in case of small positional shifts.

In our case, we simply allow the translation vector ❅ of

the affine transformation of Equation 1 to vary in the range

of few pixels when generating the view sets. These small

shift corresponds to the noise that arises in corner detection.

3.2.3 Invariance To Illumination Changes

Handling illumination changes can be done by normalizing

the views intensities. After experimenting with many nor-

malization techniques, we concluded that scaling the views

intensities so that all the views have the same minimum and

maximum intensity values is both cheap and effective as

shown in Figure 2: This has the advantage of emphazing

the view contrast. Because the normalization is performed

independently on each keypoint at run-time, it handles cor-

rectly complex illumination changes.
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Figure 3: Three synthetic views of a human face, generated

from the original image on the top left. The patches ex-

tracted from these images to build a viewset of a keypoint

on the nose are represented.

Figure 4: Using two different training images to build the

viewset of the same keypoint.

3.2.4 Relaxing the Planarity Assumptions

In our target applications such as initialization of model-

based 3D tracking, an object model is available. It may

be a precise one, as in the case of the box of Figure 1, or

a generic one as in the case of faces that we use to illus-

trate our technique. Such a model is very useful to capture

complex appearance changes due to changes in pose of a

non convex 3D object, including occlusions and non-affine

warping. For example, as shown in Figure 3, we generate

several views of a keypoint on the left side of the nose by

texture mapping the face in several positions.

This approach also lets us merge the information from

several training images in a natural way: The generated

viewsets can simply be combined when they correspond to

the same 3D point as depicted in Figure 4.

3.3. Classifi cation

The classifier must be carefully designed for our prob-

lem. Even if we eventually use a robust estimator such as

RANSAC to eliminate outliers, the mis-classification rate

should be low. A high rate would slow down the robust es-

timator and the advantage of our fast matching procedure

would be lost.

The classifier should also be able to retrieve a sufficient

number of points to estimate the object pose even in pres-

ence of partial occlusion. On the other hand, not all the

keypoints detected during the training stage have to be con-

sidered: If some keypoints appear not to be characteristic

enough to be matched reliably, it is better to ignore them to

reduce the risk of mis-classification.

Classification should also be performed sufficiently fast

for interactive applications. To achieve all these require-

ments, we perform this task as follows.

First, the viewsets are computed for object points de-

tected in one or more training images. Optionnaly, we can

create a background class by taking patches around points

detected in images of typical background. This step is not

necessary but helps to deal with cluttered background.

To reduce the dimensionality, we perform a Principal

Component Analysis on the set of patches. This is followed

by K-mean estimation on each viewset independently to

handle its potentially complex shape while compacting the

viewset representation. In practice, we compute 20 means

per viewset.

Then the classifier can attribute a class to an input patch

by a Nearest Neighbor search through the set of means and

background points. The keypoints most likely to lead to

mis-classification can be found during training, by estimat-

ing ❝❡❞✶❢❤❣✐❦❥❢♠❧❭♥✥♦ from the training set. When it is above a

given threshold (say 10%) for a class, this class is removed

from the class set ♣ . This way, we keep the more charac-

teristic object points.

Finally we build an efficient data structure [9] to perform

an efficient run time Nearest Neighbor search in the eigen

space computed by the PCA.

3.4. Why Our Approach Is Fast

First, our method does not involve any time consuming pre-

treatment such as orientation or affine transformation ex-

traction. It is made possible by matching the input points

against the compact representation of the viewsets, that con-

tain the possible views under such transformations.

Next the eigen space allows to reduce the dimensionality

of each input patch, with negligible loss of information: The

eigen images computed by the PCA can be seen as a filter

bank like in previous methods, but they are specialized for

the object to detect, since they are directly computed on the

training set.

Finally, the PCA lets us to build an efficient data struc-

ture for fast Nearest Neighbor search at run-time, since it

sorts dimensions by order of importance.
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(a) (b) (c)

Figure 5: Detecting a sail. (a) The model used to detect

the sail. (b and c) Two frames from a 4000 frame video

acquired using a home camcorder during a regatta. Even

though the camera jerks, the zoom changes and the lighting

conditions are poor, the sail is detected in all frames, such

as those shown above, where a sufficient portion of the sail

is seen.

4. Results

4.1. Experiments on a Planar object

Figure 6 depicts a first set of experiments on a planar ob-

ject. About 200 key points have been detected in the train-

ing image using the Harris detector. For each we con-

structed a viewset made of 100 samples, synthesized from

random affine transformations with q✏r❆❞❫s✞t✈✉❜✇❚t✈✉①♦ degrees,② r③❞❭s⑤④⑦⑥✛✉❱✇✥④✪⑥✤✉✤♦ degrees, ⑧❆r③❞✻✉❱⑨ ⑩❶✇✥④✤⑨ ❷①♦ , ❸❳r❹❞❫s✞❺★✇❚❺✛♦ pix-

els. The original size of the patches is ❻✤❺❽❼❆❻✤❺ pixels, it

is then divided by two to reduce the computation cost. We

kept the first 20 dimensions given by the PCA. 1000 feature

points have been detected in the input images, and matched

against the learned features, which lets us robustly estimate

an homography between the two sets. The input images

present perspective, intensity, scale and orientation changes,

and the object pose is nevertheless correctly recovered. The

whole process takes about 200 milliseconds on a 2GHz PC.

We compared our results with those obtained using the

executable that implements the SIFT method [6] and kindly

provided by David Lowe. Our method usually gives a lit-

tle fewer matches, and has a little higher outlier rate (about

10% of about 5%). Nevertheless, it is largely enough

to accurately estimate the object pose after a few tens of

RANSAC samples, and it runs faster: About 0.2 seconds

for our non-optimized executable against 1 second for the

Lowe executable on the same machine.

4.2. Detecting a Sail

We applied our method for the detection of a sail over a

4000 thousand frame video taken with a home camcorder

during a regatta. Despite the bad conditions: the sail is not

well textured as it is shown Figure 5, it moves in and out

of the field of view, the camera motions are very jerky and

the illumination changes all the time, the sail is detected in

all frames, such as those shown Figure 5, where a sufficient

portion of the sail is seen.

4.3. 3D Object Pose Estimation

In the case of a 3D object, the full pose is recovered from

the matches using the POSIT algorithm [18] in tandem with

RANSAC.

A Simple Box The method successfully recovers the pose

of a textured box disposed in almost any position, using

around six very different views for training (Figure 1). In

practice, the pose is recovered in less than a second.

A Human Face We applied the same method to a human

face, using the 3 training images of first row of Figure 7 and

a generic 3D face model. The training images have been

registered by hand, by moving the 3D model to the right

location. Even if the 3D model is far from perfect — it does

not have glasses and its shape does not match exactly — we

are able to recover the pose of a specific human face under

both illumination changes and partial occlusions as depicted

by Figure 7.

Working on faces is much harder than on a textured box

because faces provide far fewer feature points and their 3D

nature produces complex appearance changes. Neverthe-

less, only three training images where is enough to recover

the poses shown in Figure 7. The process is robust enough

to support some occlusion and still work if the subject re-

moves its glasses. It takes around one second.

5. Conclusion and Perspectives

We proposed an approach to point matching for object pose

estimation based on classification. It runs to be faster than

previous methods in the planar case, and, unlike these meth-

ods, still works for the non-planar case.

Our approach is also very general, and lets us relax the

locally planar assumption. In fact, it has the potential to rec-

ognize complex shaped textured objects, under large view-

point and illumination changes even with specular materi-

als, assuming we can generate images of the object under

such changes. This is a realistic assumption since there are

many Computer Graphics methods designed for this pur-

pose, which opens new avenues of research.

We expect that allowing more complex appearance

changes than the ones we have been dealing with so far will

result in the view-sets becoming more difficult to separate.

In pattern recognition it is common to address variability by

normalization. Similarly, our approach can take advantage

of a scale-space based point detector to deal with more sig-

nificant scale changes, without influencing the within class

variation. Additional partial invariance can be introduce by

removing the rotation in the manner of Lowe could also fa-

cilitate the classification. Whether or not this is warranted

depends on finding the optimal compromise between the

computation time of partial invariance and the gain in clas-

sification computation time.
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Figure 6: Comparison between SIFT method (left image) and ours (right) for a planar object. Our method usually gives a

little less matches, and has a little higher outlier rate. Nevertheless, it is largely enough to accurately estimate the object pose

after a few tens of RANSAC samples, with a lower computation cost than SIFT method.

We also intend to replace the simple classification meth-

ods we have described here by more sophisticated one that

can deal with the facts that each class can exhibit huge vari-

ability and thus requires a large number of samples and

interest points can belong to several classes or to none

at all. We will therefore investigate the use of decision

trees [19, 20, 21], which we believe to be most suitable for

our specific problem because they naturally handle multi-

class classification, can be enhanced by using powerful sta-

tistical methods such as bagging [22] and boosting [23, 24].

These methods are very fast, and achieve very good recog-

nition rate, usually more than 90%. Thus, we believe that

our approach is an important step toward much better object

recognition and detection methods, and opens good possi-

bilities for future research.
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