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Abstract

We combine detection and tracking techniques to achieve

robust 3–D motion recovery of people seen from arbitrary

viewpoints by a single and potentially moving camera. We

rely on detecting key postures, which can be done reliably,

using a motion model to infer 3–D poses between consec-

utive detections, and finally refining them over the whole

sequence using a generative model.

We demonstrate our approach in the case of people walk-

ing against cluttered backgrounds and filmed using a mov-

ing camera, which precludes the use of simple background

subtraction techniques. In this case, the easy-to-detect pos-

ture is the one that occurs at the end of each step when

people have their legs furthest apart.

1. Introduction

Recent approaches to modeling people’s 3–D motion

from video sequences can be roughly classified into those

that detect specific postures in individual frames and those

that track the motion from frame to frame given an initial

pose. The first category usually involves matching against a

large database and is becoming increasingly popular, but re-

quires very large training data sets to be effective. The sec-

ond category involves predicting the pose in a frame given

the pose computed in previous frames, which can easily fail

if errors start accumulating in the prediction, causing the

estimation process to diverge.

Neither technique is clearly superior to the other, and

both are actively investigated. In this paper, we show that

they can be combined to accurately reconstruct the 3–D mo-

tion of people seen from arbitrary viewpoints using a single,

∗This work has been funded in part by the Swiss National Science

Foundation and in part by the VISIONTRAIN RTN-CT-2004-005439

Marie Curie Action within the EC’s Sixth Framework Programme. The

text reflects only the authors’ views and the Community is not liable for

any use that may be made of the information contained therein.

and potentially moving, camera. At the heart of our ap-

proach is the fact that human motions often contain charac-

teristic postures that are relatively easy to detect. Given two

consecutive such postures, modeling intermediate poses be-

comes an interpolation problem, which is much easier to

perform reliably than open-ended tracking.

More specifically, we demonstrate our approach in the

case of people walking along arbitrary trajectories. In this

case, the easy-to-detect posture is the one that occurs at the

end of each step when people have their legs furthest apart.

We therefore use a chamfer-based method [7] that was de-

signed to detect this posture from any viewpoint, even when

the background is cluttered and background subtraction is

impractical because the camera moves as is the case in the

first row of Fig. 1. Because the detected postures are pro-

jections of 3–D models, we can map them back to full 3–D

poses and use them to select and warp motions from a train-

ing database that closely match them. This yields initial

pose estimates such as those of the second row of Fig. 1.

It lets us create the synthetic images we would see if the

person truly were in those positions. These images are de-

picted by the figure’s third row and we refine the pose until

they match the real ones. This yields the results depicted by

the two last rows of Fig. 1.

The importance of combining detection and tracking to

achieve robustness has long been known [5, 12] and man-

ually introducing a few 3D keyframes in a tracking algo-

rithm has been shown to be effective [6]. More recently, a

fully automated approach to combining tracking and detec-

tion has been shown to be very effective at following multi-

ple people over very long sequences in [15] in 2–D. This is

achieved by detecting people in canonical poses and track-

ing them from there, which still has the potential to diverge.

By contrast, interpolating between detected silhouettes pre-

vents this and yields 3–D reconstructions.

We chose walking to demonstrate our approach because

we had access to both the appropriate motion database and

silhouette detection technique. The approach, however, is

general because most human motions include very charac-
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Figure 1. Our approach. First row: Input sequence acquired using a moving camera with silhouettes detected at the beginning and the end

of the walking cycle. The projection of the ground plane is overlaid as a blue grid. Second row: Projections of the 3–D poses inferred

from the two detections. Third row: Synthesized images that are most similar to the input. Fourth row: Projections of the refined 3–D

poses. Fifth row: 3–D poses seen from a different viewpoint.

teristic postures that are easier to detect than completely ar-

bitrary ones. Athletic motions are a good example of this.

Canonical postures can be detected when a tennis player

hits the ball with a forehand, a backhand, or a serve [20].

The same can be said when a golfer begins the upswing,

transitions from upswing to downswing, and completes the

motion. In a work environment, there also are very charac-

teristic poses between which people alternate, such as sit-

ting at their desk and walking through the door. In short,

canonical postures are common. This is important because

one of the limitations of state-of-the-art detection-based ap-

proaches to 3–D motion reconstruction is that huge training

databases would be required to detect all possible postures.

By contrast, if one only needs to detect a few easily recog-

nizable postures, much smaller databases should suffice.

2. Related Work

Existing approaches to video-based 3D motion capture

remain fairly brittle for many reasons: Humans have a com-

plex articulated geometry overlaid with deformable tissues,

skin and loose clothing. They move constantly, and their

motion is often rapid, complex, and self-occluding. Fur-

thermore, the 3D body pose is only partially recoverable

from its projection in one single image. Reliable and ro-

bust 3D motion analysis therefore requires good tracking

across frames, which is difficult because of the poor quality

of image-data and frequent occlusions. Recent approaches

to handling these problems can roughly be classified into

those that

• Detect: This implies recognizing postures from a sin-

gle image by matching it against a database and has

become increasingly popular recently [22, 1, 9, 13, 10,



7, 8] but requires very large sets of examples to be ef-

fective. Moreover this often relies on background sub-

traction, which requires static cameras.

• Track: This involves predicting the pose in a frame

given observation of the previous one. This requires an

initial pose and can easily fail if errors start accumulat-

ing in the prediction, causing the estimation process to

diverge. This is usually mitigated by introducing so-

phisticated statistical techniques for a more effective

search [5, 3, 4, 25, 26, 19] or by using strong dynamic

motion models as priors [16, 14, 17, 2, 24, 21].

Neither technique has been proved to be superior, and

both are actively studied and sometimes combined: Manu-

ally introducing a few 3D keyframes is known to be a pow-

erful way to constrain 3D tracking algorithms [6, 11]. In

the 2D case, it has recently been shown that this can be

done in a fully automated way to track multiple people in

extremely long sequences [15]. This involves tracking for-

wards and backwards from individual and automatically de-

tected canonical poses. While effective, this approach to

tracking still has the potential to diverge. In this paper, we

avoid this problem and go to full 3D by observing that au-

tomated canonical pose detections can be linked into com-

plete trajectories, which let us first recover rough 3D poses

by interpolating between these detections and then refin-

ing them by using a generative model over full sequences.

A similar approach has been proposed for 3D hand track-

ing [23] but makes much stronger assumptions than ours,

requiring a perfect hand view with an easy to remove back-

ground.

3. Approach

Here, we first give a short overview of the complete ap-

proach, before going into more details in the following sub-

sections.

3.1. Overview

To initialize our system, we use a template-based ap-

proach [7] to detect people at the moment of the walking

cycle when their legs are furthest apart, as shown in the

first row of Fig. 1. The templates consist of consecutive

2D silhouettes obtained from 3D motion capture data seen

from six different camera views and at different scales. This

way the motion information is incorporated into the tem-

plates and helps distinguish actual people who move in a

predictable way from static objects whose outlines roughly

resemble those of humans. For each detection, the system

returns a corresponding 3D pose estimate.

In theory, a person should be detected at the beginning

of each walking cycle, which the template-based algorithm

does with a low error rate. The few false positives tend to

correspond to actual people but detected at somewhat inac-

curate scales or orientations and false negatives occur when

the person faces the camera head-on and the characteristic

pose we are looking for becomes hard to distinguish from

the others. We have therefore designed an approach based

on dynamic-programming that links detections into consis-

tent trajectories, even though a few may have been missed.

Since the camera may move, we perform this computation

in the ground plane, which we relate to the image plane via

a homography that is recomputed from frame to frame.

Finally, we use consecutive detections on individual tra-

jectories to select and time-warp motions from a training

database obtained via optical motion capture. As shown in

the second row of Fig. 1, this gives us a rough estimate of

the body’s position and configuration in each frame between

detections. To refine this initial estimate, and since the cam-

era may move from frame to frame, we first compute ho-

mographies between consecutive frames and use them to

synthesize a background scene from which the moving per-

son has been almost completely removed. We then learn an

appearance model from the detections and use it in conjunc-

tion with the synthetic background to produce new images,

which lets us refine the body position by minimizing the

difference between the original and synthetic images. This

yields the refined poses depicted by the bottom three rows

of Fig. 1.

We describe below our approach to linking sparse detec-

tions into complete trajectories and, then, to inferring 3D

poses for the whole sequence. For additional details on de-

tection itself we refer the interested reader to [7].

3.2. From Detections to Trajectories

In our scheme, people should be detected at every walk-

ing cycle but are occasionally missed. To link these sparse

detections into a complete trajectory, we have implemented

a Viterbi-style algorithm. Note that these detections include

not only an image location but also the direction the person

faces, which is an important clue for linking purposes.

Ground Plane Registration. Since the camera may

move, we work in the ground plane, which we relate to

each frame by a homography that is computed using stan-

dard techniques [18]. In practice, we manually indicate the

ground plane in one frame and compute an initial homogra-

phy between it and the world ground plane. Then, we detect

interest points in both the reference frame and the next one,

match them, use the resulting correspondences to compute

the next homography, and repeat this process for all subse-

quent frames.

Formalizing the Problem. The homographies let us

compute ground plane locations and one of eight possible



orientations for all detections, which we then need to link

while ignoring potential misdetections. To this end, we de-

fine a hidden state at time t as the oriented position of a per-

son on the ground plane Lt = (X, Y, O), where t is a frame

index, (X, Y ) are discretized ground plane coordinates, and

O is one of eight possible orientations.

We introduce the maximum likelihood estimate of a per-

son’s trajectory ending up at state i at time t

Ψt(i) = max
l1,...,ln

P (I1, L1 = l1, ..., In, Ln = ln) , (1)

where Ij represents the jth frame of the video sequence.

Casting the computation of Ψ in a dynamic programming

framework requires introducing probabilities of observing

a particular image given a state and of transitioning from

one state to the next.

We therefore take bit, the probability of observing frame

It given hidden state i, to be

bit = P (It|Lt = i) ∼
1

dchamfer

, (2)

where dchamfer is a weighted average of the chamfer dis-

tances between projected template contours and actual im-

age edges. This makes sense because the coefficients used

to weight the contributions are designed to account for

the relevance of different silhouette portions in a Bayesian

framework [7].

We also introduce the probability of transition from state

j at time t′ to state i at time t

a∆t
ji = P (Lt = i|Lt′ = j), ∆t = t − t′. (3)

Since we only detect people when their legs are spread fur-

thest apart, we can only expect a detection approximately

every Nc = 30 frames for an average v = 5 km/h walking

speed in a 25 Hz video. This implies an average distance

dc = vNc

25
between detections. We therefore assume that

a∆t
ji for state i = (X, Y, O) follows a Gaussian distribution

centered at (Xµ, Yµ) such that

√

(X − Xµ)2 + (Y − Yµ)2 = dc , (4)

and positioned in the direction 180◦ opposite to the orien-

tation O, as depicted by point A in Fig. 2. This Gaussian

covers only the hidden states with orientation equal to O.

The other previous states from which a transition may oc-

cur are those with orientations O+π/4 and O−π/4, which

are covered by two neighboring Gaussians, as depicted by

points B and C in Fig. 2.

Linking Sparse Detections. Given the probabilities of

Eq. 2 and 3, if we could expect a detection in every frame,

linking them into complete trajectories could be done using

Figure 2. Transitional probabilities for hidden state (X,Y, O).

They are represented by three Gaussian distributions correspond-

ing to three possible previous orientations. Each Gaussian covers

a 2D area bounded by two circles of radii dc − δdc and dc + δdc,

where δdc represents an allowable deviation from the mean, and

by two lines defined by tolerance angle δϕ.

the Viterbi algorithm to recursively maximize the Ψt maxi-

mum likelihood of Eq. 1.

However, since we can only expect a detection approx-

imately every Nc = 30 frames, we allow the model to

change state directly from Lt′ at time t′ to Lt at time t
(t′ < t), Nc − δt < t− t′ < Nc + δt and skip all frames in

between. δt is a frame distance tolerance that we set to 10

in our implementation.

This lets us reformulate the maximization problem of

Eq. 1 as one of maximizing

Ψt(i) = max
lt1 ,...,ltn

P (It1 , Lt1 = lt1 , ..., Itn
, Ltn

= ltn
) ,

= bit max
j,∆t

(a∆t
ji Ψt−∆t(j)) , (5)

where t1 < t2 < ... < tn, n are the indices of frames I in

which at least one detection occurred and Nc − δt < ∆t <
Nc + δt.

This formulation lets us initially retain for each detection

several hypotheses with different orientations and allow the

dynamic programming algorithm to select those that pro-

vide the most likely trajectories according to the probabil-

ities of Eq. 2 and 3. If a detection is missing, the algo-

rithm simply bridges the gap using the transition probabili-

ties only. For the sequences of Fig. 5, this yields the results

depicted by Fig. 6.

3.3. Predicting 3D Poses between Detections

A complete trajectory computed as discussed above in-

cludes rough estimates of the body’s position, orientation,

and 3D pose parameterized by a set of joint angles for the



frames in which the key posture was detected. We now turn

to inferring approximate body poses for all the frames be-

tween detections and will discuss in the following subsec-

tion how we refine them by going back to the actual images.

Let us first consider the case where the key postures at

the start and end of the walking cycle are both detected,

which in practice is the most frequent one. We represent the

human body as a set of cylinders attached to an articulated

3–D skeleton and its pose is given by the position and ori-

entation of its root node, defined at the sacroiliac, and a set

of joint angles. We use straightforward spline interpolation

to predict positions and orientations between the two detec-

tions. To predict the joint angle configurations, we take ad-

vantage of the fact that the templates used to detect people

were created using a motion capture database to which we

have access. Given a detected silhouette, we can therefore

select in the database the corresponding motion M. Since

the number of poses in M is not necessarily equal to the

number of frames between the two detections, we resam-

ple M in time. To this end, each pose in M is represented

by its coordinates into an eigen-space of dimension 3 com-

puted from the database, and the resampling is performed

in this low-dimensional space for better stability. The joint

angles are then finally retrieved by simply back-projecting

the resampled poses.

This procedure is very simple and naturally extends to

the case where a key posture has been missed, which can

be easily detected by comparing the number of frames be-

tween consecutive detections and the median value for the

whole sequence. In this case, a longer motion must be cre-

ated by repeating M several times —usually 2, and never

more than 3 in our experiments— depending on the num-

ber of frames between detections. This new motion is then

resampled as before. Obviously the predictions then lose in

accuracy, but they usually remain precise enough to retrieve

the correct poses thanks to the refinement process described

in the following section.

3.4. Refining the Predicted Poses

We now turn to refining the initial set of 3–D poses using

a generative approach: For a given body pose, we generate

the synthetic image we would see if the person truly were in

that position and compare to the original one. Minimizing

the difference between real and synthetic image then lets us

refine the poses in each individual frame.

This is standard but we add an important novel element

which we have found to be key to obtaining good results,

as illustrated by Fig. 3: We not only create an appearance

model for the person but also for the background so that

the synthetic images we produce include both. This effec-

tively constrains the projections of the reconstructed model

to project at the right place and allows us to recover the cor-

rect pose even when the initial guess is far from it.

Figure 3. Refinement process. The images are from left to right the

input image, the initialization given by the interpolation process,

the refinement obtained without using the background generation,

and finally the refinement obtained as proposed. Whole parts of

the body can be missed when the background is not exploited.

Fig. 4 depicts our approach to computing the background

images. Given an image of the sequence, we treat it as a ref-

erence and consider the few images immediately before and

after. We compute homographies between the reference and

all other images [18], which is a reasonable approximation

of the frame-to-frame deformation because the time elapsed

between successive frames is short and lets us warp all the

images into the reference frame. Subsequently, by taking

the median of the values for each pixel in HSV color space,

we obtain background images with few artifacts.

Given these generated background images, we project

our human body model according to the pose we want to

evaluate. As discussed in Section 3.3, individual limbs are

modeled as cylinders to which we associate a color by av-

eraging pixel intensities in the projected area of the limb

in the frames where the silhouette was detected. We project

the body model onto the generated background image to ob-

tain a synthetic image, such as those depicted by the third

row of Fig. 1. A pose can then be evaluated by comput-

ing the sum-of-squared-differences (SSD) between this syn-

thetic image and the actual one. Incorporating both fore-

ground and background into our synthetic images makes

the measure reliable enough so that we did not have to use

a robust estimator for our experiments. However, because

it produces many local minima when the pose changes, we

use a simple stochastic optimization technique that samples

the pose space around the predicted pose in the low dimen-

sional space and retain the sample that yields the smallest

SSD. Because we only search for poses around the pre-

dicted ones, we still benefit from the constraints provided

by interpolating between key-poses.

4. Results

The algorithm presented in the previous sections allows

us to robustly and automatically retrieve the 3–D pose of a

walking person, different from the subjects we used to cre-

ate the database, without drift. We demonstrate this using

sequences acquired with a moving camera and where the

person may be seen from very different angles.

Figs. 7, 8, and 9 depict excerpts of such sequences,

which we provide as supplemental material.



Figure 4. Synthesizing a background image. First row: The rightmost image is the reference image whose background we want to

synthesize. The other 4 are those before and after it in the sequence. Second row: The same four images warped to match the reference

image. Computing the median image of these and the reference image yields the rightmost image, which is the desired background image.

Figure 5. Filtering silhouettes with temporal consistency on an outdoor sequence acquired by a moving camera. First row: Detection

hypotheses. Second row: Detections after filtering out the detection hypotheses that do not lie on the recovered most probable trajectory.

In the sequence of Fig. 7 the camera translates and the

subject is seen first from the side and progressively from

the back as he becomes smaller and smaller. In Fig. 9, we

highlight the robustness of our approach to missed detec-

tions: Using only one detection out of every two does not

substantially degrade the performance.

5. Conclusion

The walking motion contains a characteristic posture that

is relatively easy to detect. We have exploited this fact

to formulate 3–D motion recovery from a single video se-

quence as an interpolation problem. This is much easier to

achieve than open-ended tracking and we have shown that

it can be solved using straightforward minimization.

This approach is generic because most human motions

also feature canonical poses that can be easily detected.

This is significant because it means that we can focus our

future efforts on developing methods to reliably detect these

canonical poses instead of all poses, which is much harder.

In future research, we will therefore extend our approach

to other motions, such as running, swinging a golf club, or

playing tennis.
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