
SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Robust 3D Object Tracking from Monocular
Images using Stable Parts

Alberto Crivellaro, Mahdi Rad, Yannick Verdie, Kwang Moo Yi, Pascal Fua, Fellow, IEEE ,

and Vincent Lepetit

Abstract—We present an algorithm for estimating the pose of a rigid object in real-time under challenging conditions. Our

method effectively handles poorly textured objects in cluttered, changing environments, even when their appearance is corrupted

by large occlusions, and it relies on grayscale images to handle metallic environments on which depth cameras would fail. As

a result, our method is suitable for practical Augmented Reality applications including industrial environments. At the core of

our approach is a novel representation for the 3D pose of object parts: We predict the 3D pose of each part in the form of the

2D projections of a few control points. The advantages of this representation is three-fold: We can predict the 3D pose of the

object even when only one part is visible; when several parts are visible, we can easily combine them to compute a better pose

of the object; the 3D pose we obtain is usually very accurate, even when only few parts are visible. We show how to use this

representation in a robust 3D tracking framework. In addition to extensive comparisons with the state-of-the-art, we demonstrate

our method on a practical Augmented Reality application for maintenance assistance in the ATLAS particle detector at CERN.

Index Terms—3D Detection, 3D Tracking

✦

1 INTRODUCTION

M Ethods for 3D object detection and tracking

have undergone impressive improvements in recent

years [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11],

[12], [13], [14]. However, each of the current approaches

has its own weaknesses: Many of these approaches [1],

[3], [9], [13] rely on a depth sensor, which would fail

on metallic objects or outdoor scenes; methods based on

feature points [6], [8] expect textured objects; those based

on edges [4], [7] are sensitive to cluttered background; most

of these methods [3], [2], [5], [11], [15], [10], [12] are not

robust to occlusion. We also want a method fast enough for

interactive 3D applications.

As Fig. 1 shows, we are interested in scenes exhibiting

the conditions of real-world Augmented Reality applica-

tions, that is, scenes with poorly textured objects that

are possibly visible only through heavy occlusions, drastic

light changes, and changing background. A depth sensor

is not an option in our setup, as the target objects often

have specular surfaces. Feature point-based methods are

also prone to fail because of the lack of texture and the

ambiguous, repetitive patterns present in the scene.

At the core of our approach is the efficient detection of

discriminative parts of the target object. Relying on parts

• A. Crivellaro, K. M. Yi and P. Fua are with the Computer Vision

Laboratory, IC Faculty, École Polytechnique Fédérale de Lausanne

(EPFL), Lausanne CH-1015, Switzerland.

E-mail: firstname.lastname@epfl.ch

• M. Rad and V. Lepetit are with the Institute for Computer Graphics

and Vision, Graz University of Technology, Graz 8010, Austria.

E-mail: lastname@icg.tugraz.at

• Y. Verdie is with NCam-Tech, Paris, France.

E-mail: yannick.verdie@ncam-tech.com

1Figures are best seen in colors.

Fig. 1. Our method in action during a demonstra-

tive technical intervention at CERN, Geneva. Detected

parts are shown as colored rectangles. The appear-

ance of the scene constantly changes and undergoes

heavy occlusions. Despite these difficulties, we accu-

rately estimate the 3D pose of the box, even if only

one part is detected or in presence of false detections

caused by the cluttered environment.1

for 3D object detection is not new [16], [2], [17], [12], [10].

The novelty in our approach is a powerful representation

of the pose of each part.

Some previous methods use homographies [18], [16],

[10] to represent a part pose, however this assumes that the

object is piece-wise planar, and it is not easy to combine

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

the homographies from several parts together to compute

a better pose for the target object. Feature point-based

methods simply use the 2D locations of the feature points,

which wastes very useful information.

As shown in Fig. 2, we therefore represent the pose

of each part by the 2D reprojections of a small set of

3D control points. The control points are only “virtual”,

in the sense they do not have to correspond to specific

image features. This representation is invariant to the image

location of the part and only depends on its appearance.

We show that a Convolutional Neural Network [19] (CNN)

can accurately predict the locations of these reprojections,

as well as the uncertainty of the location estimates. We

analyse in detail the theoretical underpinnings of why this

representation is more effective than alternative approaches

such as the direct prediction of a rotation and translation, or

the prediction of 3D control points themselves; our exper-

imental results confirm our analysis showing a substantial

performance gain when employing our part representation.

Given an input image, we run a detector to locate each

part on the image. We also use a CNN for this task, but

another detection method could be used. We then predict

the reprojections of the control points by applying a specific

CNN to each hypothesis. This gives us a set of 3D-2D

correspondences, from which we can compute the 3D pose

of the target object with a simple robust algorithm.

This approach has several advantages:

• We do not need to assume the parts are planar, as was

done in some previous work;

• we can predict the 3D pose of the object even when

only one part is visible;

• when several parts are visible, we can combine them

easily to compute a better pose of the object;

• the 3D pose we obtain is usually very accurate, even

when only few parts (possibly a single one) are visible.

Early work on our approach was originally published in

[20]. Here, we introduce several contributions, including:

• We discuss a more general algorithm for robust selec-

tions of detection candidates exploiting the pose prior;

• we introduce a more sophisticated system for evaluat-

ing the pose hypothesis;

• when tracking an object across a video sequence,

we make use of an Extended Kalman filter [21] for

reducing the jitter and providing smoother trajectories;

• we use a new architecture for the part detector, making

use of Local Contrast Normalization for better gener-

alization in presence of heavy light changes;

• we present new experimental results assessing the

effectiveness of our method and of the innovations

introduced. The dataset originally presented in [20] has

been refined with supplementary manual annotations

for all the object parts;

• we demonstrate our method on a real Augmented Re-

ality application for maintenance assistance at CERN.

In the remainder of the paper, we first discuss related

work in Section 2, we describe our approach in Sections 3

to 7, and we evaluate it in Section 8 on challenging datasets.

(a) (b)

Fig. 2. Our representation of the 3D pose of an

object part. (a) We consider seven 3D control points

for each part, arranged to span 3 orthogonal directions.

(b) Given an image patch of the part, we predict the 2D

reprojections of these control points using a regressor,

and the uncertainty of the predictions.

2 RELATED WORK

3D object detection has a long history in Computer Vi-

sion, and we focus here on representative works. A well-

established research direction relies on edges [22], [23],

[24], but they are sensitive to large occlusions and clut-

ter. More recently, keypoint-based methods became pop-

ular [25], [26], [27] probably because keypoints can be

extracted and matched more reliably. Unfortunately, the use

of keypoints is limited when the target object is poorly

textured. Some works combine keypoints with edges [28],

[29] or stereo information [6]. However, extracting and

matching edges remains delicate, and requiring a stereo

configuration limits the applicability of the 3D tracker.

Besides keypoints, silhouettes and region based methods

have also been proposed. In [30], [31], 3D tracking problem

is considered as joint 2D segmentation and 3D pose estima-

tion problem, and the method looks for the pose that best

segments the target object from the background. Contours

and edges are used in [32] with multiple hypotheses to

provide robust pose estimation. Partial occlusions, however,

are difficult to handle with such approaches.

The development of inexpensive 3D sensors such as the

Kinect has recently sparkled different approaches to 3D

object detection. [1], [33] use votes from pairs of 3D points

and their normals to detect 3D objects. [34] uses a decision

tree applied to RGB-D images. [3] uses a template-based

representation for dealing with poorly textured objects. De-

spite its robustness to clutter and light changes, according

to our experimental results, this approach is sensitive to oc-

clusions, a key-requirement in our context. The more recent

[9], [11] rely on recognition of local patches. However all

these methods were designed for RGB-D images, which

are not an option in our target applications. Like [35],

we address the problem of evaluating a pose hypothesis

in a reliable way in presence of clutter and occlusions.

Our solution, presented in Section 6.4, provides a fast and

reliable solution without relying on depth images.

Like [36], [16], we learn 3D poses. Nonetheless, our part-

based approach with our representation for the part poses

allow us to be much more robust to occlusions, while such

approaches are not straightforwardly generalizable to a part-

based framework.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

Since our approach is based on object parts, it is also

related to works such as [37], [2], [10], [12] that mostly

focus on category rather than instance detection. These

works were mostly motivated by the success of the De-

formable Part Model [38] developed for 2D detection,

which was extended successfully to 3D, for example in [2].

[10] also performs 3D tracking through part-based particle

filtering by integrating multi-view. [37] uses contours as

parts. In [12], 3D shared parts are learned with CAD models

and real images for fine pose estimation. However, these

works are not robust to occlusions of some of the parts,

especially because the 2D location of the part is solely

considered to constrain the object pose.

Finally, a very active and related field is SLAM (Si-

multaneous Localization and Mapping) [39], [40], [41]. On

one hand, SLAM does not require prior 3D knowledge, but

on the other hand it is limited to estimate a relative pose

only, which is not suitable for many Augmented Reality

applications. The semi-dense approach proposed by [41] is

particularly effective in handling sparsely textured surfaces;

on the other hand, as other SLAM approaches, it is prone

to fail on dynamic scenes and highly occluded targets.

3 ROBUST 3D POSE ESTIMATION WITH

PARTS

Our goal is to estimate the 3D pose of a known rigid object

with respect to a projective camera given a grayscale image

of the object. We assume the internal parameters of the

camera are known. Additionally, we assume that we are

given a non-textured 3D model of the object, such as a

triangular mesh, and a set of manually labeled parts on it.

A part is simply defined as a discriminative region of the

object, which can easily be detected on an input image. The

object model is only used for annotating the 3D location of

the parts on the object and for computing the silhouette of

the object under different views, as described in Section 6.4.

This allows us to use very simple models, for example a

parallelepiped for an electric box, or a cylinder for a food

can. We can thus neglect details that would be difficult

or impossible to reconstruct, such as the interior of the

electric box depicted in Fig. 1. Ideally, the parts should

be spread over the object. No assumption is made about

their size: usually, bigger parts are more discriminative, but

smaller parts are less likely to be partially occluded. The

3D pose of the object is retrieved exclusively from its parts,

while the appearance of the rest of the object can freely

vary with occlusions, clutter, etc., without affecting the final

result. A very small number of parts is required by our

framework—in all our tests we employed at most 4 parts

for an object, and, in general, our objects of interest have

very few discriminative regions, so we select the parts by

hand. For training our algorithm, we make use of a set of

registered training images, showing the parts under different

poses and lighting conditions.

After detecting several candidates for each of the parts

of the target object as described in Section 4, we select

the most likely candidates given a prior on the pose as

symbol meaning

i index of a training image
p index of a part
k index of a control point or its projection
l index of a detection candidate on a testing image
Cp 3D center of the p-th part
Ii i−th training image
cip projection of Cp in the i-th training image
vipk projection of Vpk in the i-th training image
ĉpl l-th detection candidate for the projection of Cp in an input image
spl score for this detection
Vpk k-th 3D control point of the p-th part
v̂pk prediction for the projection of Vpk (no outlier)
Spk covariance for prediction for the projection of Vpk (no outlier)
v̂pkl l-th prediction for the projection of Vpk in an input image
q an image patch
Sq Size of image patch q

I incoming image at test time
M number of components of the Mixture-of-Gaussians pose prior
(pm, Sm) average and covariance of the m-th component of the pose prior

p̂(m) pose estimated starting from the m-th component of the prior
p̂ final estimation of the pose

TABLE 1

Main notations.

explained in Section 6.2. For each selected candidate, we

estimate the 3D pose of the target part (Section 5) and, if

more than one part are visible, we combine the 3D poses

computed for each part for estimating the pose of the target

object (Section 6). Since several priors can be used at the

same time, we assign a score to each of the computed poses.

This score depends on several cues, and is also learned

using linear regression (Sections 6.3 and 6.4). Finally, we

select the pose with the best score as our final estimation.

When tracking frames across a video sequence, we employ

the Extended Kalman filter described in Section 7 in order

to reduce the jitter and provide smoother trajectories.

4 PART DETECTION

The first step of our pipeline is the detection of the visible

object parts on the image. Different methods could be em-

ployed for this step. Motivated by the recent success of the

Convolutional Neural Networks for object detection [42],

[43], [44], we use a CNN for predicting the parts locations

on the image, which appears to work also well for this task.

In order to learn to detect the parts, we exploit a set of

registered training images as the one shown in Fig. 3(a).

We denote our training data as 2:

T =
{(

Ii, {cip}p , {vipk}pk

)}
i

, (1)

where Ii is the i-th training image, cip the projection of the

center Cp of the p-th part on Ii, and vipk the projection of

the k-th control point of the p-th part on the image.

During an offline stage, we train a CNN with a standard

multi-class architecture shown in Fig. 4 to detect the parts.

The input to this CNN is a 32×32 image patch q, its output

consists of the likelihoods of the patch to correspond to

one of the NP + 1 parts. We train the CNN with patches

randomly extracted around the centers cip of the parts

in the training images Ii and patches extracted from the

2The main notations are summarized in Table 1.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) (b)

(c) (d)

Fig. 3. Detecting the parts. (a) An input image of the

box. (b) The output of the CNNpart-det for each image

location. Each color corresponds to a different part. (c)

The output after Gaussian smoothing. (d) The detected

parts, corresponding to the local maximums in (c).

Fig. 4. Architecture of CNNpart-det for part detection.

The last layer outputs the likelihoods of the patch to

correspond to each part or to the background.

background, and by optimizing the negative log-likelihood

over the parameters w of the CNN:

ŵ = argmin

NP∑

p=0

∑

q∈Tp

− log softmax(CNNpart-det
w (q))[p] ,

(2)

where Tj is a training set made of image patches cen-

tered on part p and T0 is a training set made of image

patches from the background, CNNpart-det
w (q) is the NP +1-

vector output by the CNN when applied to patch q, and

softmax(CNNpart-det
w (q))[p] is the p-th coordinate of vector

softmax(CNNpart-det
w (q)).

At run time, we apply this CNN to each 32 × 32 patch

in the input images captured by the camera. This can be

done very efficiently as the convolutions performed by the

CNN can be shared between the patches [45]. As shown in

Fig. 3, we typically obtain clusters of large values for the

likelihood of each part around the centers of the parts. We

therefore apply a smoothing Gaussian filter on the output

of the CNN, and retain only the local maximums of these

values as candidates for the locations of the parts.

The result of this step is, for each part p, a set Sp =
{(ĉpl, spl)}l of 2D location candidates ĉpl for the part along

with a score spl that is the value of the local maxima

returned by the CNN. We will exploit this score in our pose

estimation algorithm described in Section 6. We typically

get up to 4 detections for each part on an input image.

For better robustness to illumination changes, we nor-

malize the images with a Difference-of-Gaussians:

q = (Gσ2
−Gσ1

) ∗ q′ (3)

where q′ is the original grayscale input patch before

normalization, Gσ1
and Gσ2

are 2D Gaussian kernels of

manually selected standard deviations σ1 and σ2 respec-

tively, and ∗ the symbol for the product of convolution. We

experimentally found this method to perform better than

Local Contrast Normalization, which is often the normal-

ization method used with Convolutional Neural Networks.

5 PART POSE ESTIMATION

5.1 Representation of the Part Pose

The second step of our pipeline consists in predicting the

pose of each part, starting from information about its local

appearance, i.e. an image patch q extracted on an image

I around the projection of the part center c. More exactly,

we seek a function:

P : Q× R
2 −→ SE(3) (4)

that, given q and c, computes the pose of the part p =
P(q, c) on image I; Q and SE(3) are, respectively, the

space of the image patches of size Sq × Sq , and the space

of the 3D rigid transforms.

For a given c, P(·, c) should be insensitive to imaging

changes due to noise, light conditions, etc., and it has no

clear analytical form. Moreover, in order to simplify the

problem, we seek for a pose representation P of the form:

P(q, c) = R(Q(q), c), (5)

where Q(q) is some representation of the pose of the patch

that does not depend on the position of the patch on the

image, and R is a function that does not depend on the

patch appearance, but on the pose representation computed

by Q. To allow Q to account for all the appearance changes

of the patch, we approximate it with a non-linear regressor.

A crucial point to address is how to define Q(·), that is,

how to choose the most suitable representation for the pose

of each part. Q should satisfy the following constraints:

• Combining the poses of an arbitrary number of parts

must be easy and efficient;

• the pose representation should be translation invariant,

that is, Q(q) should not depend on the position of the

patch on the image;

• since we approximate Q with a regressor, the pose

representation should be should be tied-in with the

regressor’s capabilities. For example, as our experi-

mental results show, it is very hard for a regressor to

accurately estimate the scale or the depth of a part

from a patch.

A priori, we can imagine several ways to represent the

3D poses of the parts:

• Homography: it is possible to use homographies for

representing the pose of each part [18], [16], [10].

However, this assumes that the part surface is planar,

and makes it difficult to merge the individual pose

estimations from the different parts.

• 3D Pose: Another possibility is having the output of

Q(q) consists of a 3D rotation and the depth value

for the patch center. It is then possible to retrieve

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Fig. 5. Architecture of the CNN CNNcp-pred-p predicting

the projections of the control points.

the 3D translation as well, from the location of the

patch on the image and the predicted depth. However,

this representation is not translation invariant in a

fully perspective model. Also it is not easy to merge

rotations for estimating the pose of the whole target

object. Finally, this choice requires to predict the depth

accurately from a single image patch, which appears

to be very difficult to do accurately in our experiments.

• 3D Control points: Since our final solution is based

on 3D control points, as already mentioned, we could

set the output of Q(q) to be the 3D locations of the

control points in the camera reference system. In this

case, estimating the pose becomes simple, since it

only involves computing the rigid motion between two

sets of 3D points [46]. Moreover, also combining the

poses of the parts becomes a trivial task, as we simply

need to compute the rigid motion between multiple

sets of 3D points. However, as it will be explained in

Section 8.4, this pose representation is not translation

invariant under a fully perspective model, and more

importantly in practice, accurately predicting the 3D

points is difficult.

• 2D reprojections of 3D control points: This is

the representation we propose. The part poses are

represented as the 2D reprojections of a set of 3D

control points. This representation is fully translation

invariant. It is straightforward to combine the poses of

an arbitrary number of parts, by grouping all the 2D

reprojections together and solving a PnP problem. We

don’t have to predict the depths or the 3D locations

of the control points, which, as noted above, is very

difficult to do accurately. These advantages entail a

significant accuracy gain, as shown by our results in

Section 8.4. The control points are purely virtual and

do not correspond to any physical feature of the parts,

therefore we can freely set their configuration. We

evaluate different configuration in Section 8.5.

5.2 Prediction of the Reprojections of the Control
Points

Once the parts are detected, we apply a regressor to

the patches centered on the candidates ĉpl to predict the

projections of the control points for these candidates. We

also implemented this regressor as a CNN; each part has its

specific CNN. As shown in Fig. 5, these networks take as

input a patch of size of 64× 64. The output layer is made

of 2NV neurons, with NV the number of control points

of the part, which predicts the 2D locations of the control

points. We train each of these CNNs during an offline stage

by simply minimizing over the parameters w of the CNN

the squared loss of the predictions:

ŵ = argmin
∑

(q,w)∈Vp

||w − CNNcp-pred-p
w (q)||2 , (6)

where Vp is a training set of image patches q centered

on part p and the corresponding 2D locations of the

control points concatenated in a (2NV)-vector w, and

CNNcp-pred-p
w (q) is the prediction for these locations made

by the CNN specific for part p, given patch q as input. At

run-time, we obtain for each ĉpl candidate, several predic-

tions {v̂pkl} for the control points projections. In addition,

we can estimate the 2D uncertainty for the predictions,

by propagating the image noise through the CNN that

predicts the control point projections [21]. Let us consider

the matrix:

SV = Jĉ(σId)J
⊤
ĉ
= σJĉJ

⊤
ĉ

, (7)

where σ is the standard deviation of the image noise

assumed to be Gaussian and affect each image pixel in-

dependently, Id the 642 × 642 Identity matrix, and Jĉ the

Jacobian of the function computed by the CNN, evaluated

at the patch centered on the candidate ĉ. Such a Jacobian

matrix can be computed easily with a Deep Learning

framework such as Theano [47] thanks to the Chain Rule,

by multiplying the Jacobians of the successive layers of

the network together. By neglecting the correlation between

the different control points, we can compute the 2 × 2
uncertainty matrix Spk for each control point k efficiently

of part p, without having to compute the entire, and very

large, product in Eq. (7):

Spk = σJpk
ĉ
J
pk
ĉ

⊤
, (8)

where J
pk
ĉ

is made of the two columns of Jĉ that correspond

to the reprojection of the control point k. An example of

predicted control points is shown in Fig. 2(b).

6 OBJECT POSE ESTIMATION

In this Section, we detail how we use the predicted repro-

jections to robustly estimate the object pose.

As in previous work [48], we assume that we are given a

prior on the pose p, in the form of a Mixture-of-Gaussians

{(pm, Sm)}. This prior is very general, and allows us to

define the normal action range of the camera. For example,

the camera is unlikely to be a few centimetres from the

object, or more than tens of meters away, or facing the

object upside-down. Moreover, the pose computed for the

previous frames can be easily incorporated within this

framework to exploit temporal consistency.

In the following, we will first assume that this prior

is defined as a single Gaussian distribution of mean and

covariance (p0, S0). We will extend our approach to the

Mixture-of-Gaussians in Section 6.3.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Fig. 6. Pose prior for an electric box: Projections of the

box by each of the 9 Gaussians centers pm.

6.1 Using a single Gaussian Pose Prior

Let us first assume there is no outlier returned by the part

detection process or by the control point prediction, and

that all the parts are visible. Then, the object pose p̂ can

be estimated as the minimizer of F (p), with F (p) =

1
NP

∑
p,k

dist2(Spk,Γp(Vpk), v̂pk) +

(p− p0)
⊤S

−1
0 (p− p0) ,

(9)

where the sum is extended over all the control points

of all the parts, and Γp(V) is the 2D projection of V

under pose p. v̂pk is the projection of control point Vpk

and Spk its uncertainty estimated as in Eq. (8). Since we

assume here that there is no outlier, we dropped here the

l index corresponding to the multiple detections. dist(.) is

the Mahalanobis distance:

dist2(S,v1,v2) = (v1 − v2)
⊤
S
−1(v1 − v2) . (10)

F (p) is minimized using the Gauss-Newton algorithm

initialized with p0. At each iteration, we update the esti-

mated covariance of the computed pose using the Extended

Kalman Filter update formula [21] when optimizing Eq. (9).

6.2 Outlier rejection for the detected parts

In practice, for the location of the p-th part, the detection

procedure described in Section 4 returns a set of hypotheses

Sp = {ĉpl}l. To reject outliers in detection, we use the fact

that at most one detection is correct for each part, and keep

the hypotheses that are most in agreement with the pose

prior: After ranking the candidates according to their score

spl, we examine the best three candidates for each part

and we form all the possible sets C = {ĉ1, . . . , ĉp, . . .} of

detections containing at most one candidate for each part.

Given the pose prior p0, we evaluate the set of candidates

C with the following steps:

1) Select two random candidates ĉp1
, ĉp2

∈ C, and

translate the pose prior p0 to obtain a new prior pTS
0

that best fits ĉp1
, ĉp2

. More exactly, we adjust the

in-plane translation such that:

Γ
p

TS
0

(Cp1
) + Γ

p
TS
0

(Cp2
) = ĉp1

+ ĉp2
(11)

and the off-plane component such that:

||Γ
p

TS
0

(Cp1
)− Γ

p
TS
0

(Cp2
)|| = ||ĉp1

− ĉp2
||. (12)

2) We keep considering C only if all the detections it

contains are consistent with the new prior. This test

can be formalized as:

∀ĉp ∈ C : ρp < T 2

with ρp = dist2(Ŝ0(Cp),Γp
TC
0

(Cp), ĉp)
(13)

where Ŝ0(Cp) = J S0J
⊤, with J the jacobian of

Γ
p

TS
0

(Cp), is the covariance of the projected control

point Γ
p

TS
0

(Cp); we set the threshold T = 40 pixels

in all our experiments.

3) If several sets C pass this test, we retain the one

with the largest number of detected parts. If several

retained sets have the same number of points, we keep

the one with the smallest average error ρ = 1
|C|

∑
p ρp

of its points.

4) Finally, we run the Gauss-Newton optimization of

Eq. (9) using the detections in the retained set to

obtain a pose estimate.

If the object of interest has a single part, we simply select

the detection candidate with the highest score.

6.3 Using a Mixture-of-Gaussians for the Pose

Prior

In practice, the prior for the pose is in the form of a

Mixture-of-Gaussians {(pm, Sm)}m with M = 9 compo-

nents. The prior we use for the BOX dataset is shown

in Fig. 6. We apply the method described above to

each component, and obtain M possible pose estimates:

p̂(1), . . . , p̂(M).

6.4 Identifying the Best Pose Estimate

To finally identify the best pose estimate p̂ among the

different estimates obtained with the Mixture-of-Gaussians

prior, we evaluate each p̂(m) using several cues. As it is

difficult to combine cues of different natures, our key idea

here is to train a linear regressor to weight the contributions

of the different cues and predict a penalty.

More exactly, we use the angle α and the scale difference

δscale between the quaternions for p̂(m) and the correspond-

ing component of the prior, the final value of the objective

function F (p̂(m)) defined in Eq. (9), and a score ξ(p̂(m))
measuring the correlation between the edges in the image

and the object contours after projection by p̂(m). ξ(p̂(m))
is computed as:

ξ(p̂(n)) =
∑

x

(
n(x) · [Iu(x), Iv(x)]

⊤
)

, (14)

where n(x) is the unit normal of the projected object con-

tour at pixel x, Iu(x) and Iv(x) are the partial derivatives

of the incoming image I at pixel x, and the sum is over the

pixels x lying on the re-projected contours of the object.

Offline, we create a training set generated from the

training sequence by adding noise to the ground truth

poses, and computing the values of our different cues. For

each sample, we compute a penalty that is the sum of the

euclidean norms of the rotation and translation components

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

of the absolute pose error [49] introduced by the noise.

We can then train a linear regressor to predict this penalty

given our different cues. At run-time, we simply have to

use the linear regressor to predict the penalties of the pose

estimates, and keep the one with the smallest penalty.

7 TRACKING FRAMES ACROSS A VIDEO

SEQUENCE AND POSE FILTERING

When tracking an object across a video sequence, if a pose

is estimated for a given frame, we add it as a component of

the pose prior for the next frame. This allows us to easily

exploit temporal constraints. 3 Moreover, we use a Kalman

Filter for reducing jitter and provide smoother trajectories.

7.1 Extended Kalman Filter for 3D Tracking

In visual tracking, Kalman Filters typically treat images

as observations. However, this requires the linearisation of

the imaging process with respect to the 3D pose, which

can result in a poor approximation. Therefore, we chose to

consider our pose estimation method as a “black box”, and

we treat the poses it predicts as observations for the filter,

alleviating the need for linearisation.

7.1.1 State Vector

We model the camera motion as a first order, discrete-time

dynamic system, and the state vector at time t is provided

by the (12)−vector:

st = [t⊤t , r⊤t , v⊤
t , ω⊤

t]
⊤ , (15)

where tt is the translation component of the camera pose, rt
is the exponential map representation of the rotation compo-

nent of the pose, vt is the linear velocity and ωt the angular

velocity. At each time step, our estimation of the system

state is updated according to the available observations with

the predictor-corrector scheme of Kalman Filters. First, the

state estimate s̃t−1 and its covariance S̃t−1 are updated with

a motion model to predict the state at current time s̃tt−1 and

the covariance S̃tt−1. Then, the observation of the current

state is employed for correcting the initial prediction and

obtain the final state estimation s̃t.

7.1.2 Notations

For sake of clarity, we summarize here the notation con-

vention of this section. For a given quantity x, then:

• x̃t−1 is the estimate of x at the end of step t− 1;

• x̃t
t−1 is the estimate of x at time t obtained by updating

x̃t−1 according to the dynamic model;

• x̂t is the observed value of x at step t, typically the

camera pose predicted by the method described above.

• x̃t is the final estimate of x at time t, obtained

correcting x̃t
t−1 according to the observation x̂t.

3The covariance of the new component can be computed as explained
in Section 6.1. We empirically found that this lead to very small values
of the covariances of the computed poses, so the covariance of the new

prior component is set as 10−3

|C̃|
Id(6), where |C̃| is the number of parts

employed for computing the pose.

7.1.3 Predictor: State Update

The state at each time step is predicted from the estimate

of the state at the previous time step using the following

motion model:

t̃tt−1 = t̃t−1 + δt ṽt−1

r̃tt−1 = log(δq(ω̃t−1) · q(r̃t−1)) (16)

ṽt
t−1 = ṽt−1

ω̃t
t−1 = ω̃t−1 ,

where δt is the time difference between 2 subsequent

time steps, δq(·) and q(·) are unit quaternions obtained

from exponential map representations with the exponential

mapping, · denotes the quaternion multiplication and log(·)
maps the quaternion back to the exponential map represen-

tation. Without loss of generality, we will take δt = 1.

The covariance of the state is updated using:

S̃
t
t−1 = JupdateS̃t−1J

⊤
update + A , (17)

where Jupdate is the (12 × 12)−jacobian matrix of the

update (16), and A is given by :

A =




1
3aId 0 1

2aId 0
0 1

3bId 0 1
2bId

1
2aId 0 aId 0
0 1

2bId 0 bId


 , (18)

where Id is the (3 × 3)−identity matrix, and a and b are

2 parameters corresponding to the incertitude about the

temporal derivatives of the velocities. We empirically set

a = b = 100 in all our experiments. Interested readers can

refer to [50] and its references for further details about the

derivation of matrix A.

7.1.4 Corrector: Taking into Account Observations

After computing a prediction of the current state and its

covariance, we correct it taking into account our observa-

tion, the pose p̂t. Since we cannot observe the velocities

directly, their estimations would stay indefinitely stuck in

the initial state if we only use the motion model of Eq. (16).

To avoid this problem, we compute the velocities as:

v̂t = (t̂t − t̃t−1) and ω̂t = ω(r̃t−1, r̂t) , (19)

where the angular velocity ω(r1, r2) between 2 consecutive

rotations r1, r2 is estimated as follows:

R1 = R(r1) , R2 = R(r2) , δR = R2R
⊤
1 ,

θ = acos

(
trace(δR)− 1

2

)
,Ω =

θ

2 sin(θ)
(δR− δR⊤) ,

ω(r1, r2) = [Ω21,Ω02,Ω10]
⊤,

where R(r) is the (3 × 3)−rotation matrix corresponding

to the rotation vector r, and ω = [0, 0, 0]⊤ if ||θ|| is

smaller than a threshold for preventing division by 0.

For the covariance of the observed state Ŝt, we employ

a constant, diagonal covariance matrix. Finally, we simply

have to apply standard Kalman update equations for cor-

recting the pose estimate.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

7.1.5 Initialization - Outlier Rejection

For the first frame of the video sequence, we initialize the

state vector estimate with p̂t and null velocities. Special

care must be taken in order to detect and reject outliers in

the observed poses. In practice, we use the following tests:

• if an observed pose p̂t is not close to the last estima-

tion p̃t−1, then it is probably an outlier and should

not be taken into account;

• if 2 consecutive observed poses p̂t−1 and p̂t are close

to each other, then they are probably not outliers, even

if they are far from the last pose estimate.

If the observed pose p̂t is detected an outlier according to

these tests, we then set s̃t := s̃tt−1. If outlier observed poses

are observed for more than 3 frames in a row, we assume

that tracking is lost. Tracking is then automatically re-

initialized with the observed pose as soon as 2 consecutive

poses are observed, sufficiently close to each other.

8 EXPERIMENTAL RESULTS

In this section, after describing the datasets we use for

evaluating our method in Section 8.2, we present and

discuss the results of our evaluation. In Section 8.3 we

assess the effectiveness of our part detection method, as

well as that of the Diffference-of-Gaussians (DoG) Nor-

malization introduced in Section 4. In Sections 8.4 and 8.5

we validate the choice of reprojections of control points

for representing the pose of each part, and investigate

the different possible configurations. Then, in Section 8.6

and 8.7 we present the results of an extensive comparison

with other methods, showing that our approach achieves

state-of-the-art performances on our challenging sequences.

In Section 8.8 we describe our experiments on a recent

dataset, the T-less dataset, investigating the influence of

the number and shape of the object parts on the pose

detection results. Finally, in Section 8.9 we present a real

use case application of our method, an Augmented Reality

application for maintenance assistance at CERN.

8.1 Evaluation protocol

In order to quantitatively evaluate the performances of a

method on a video sequence, we compute the rotation and

translation components of the absolute pose error [49] for

each frame, and then trace their Cumulative Distribution

Functions (CDF), as shown for example in Figures 11.

The normalized Area Under Curve (AUC) score, defined

as the integral of the CDF curve is reported for facilitating

comparisons between methods, for example in Table 2. We

normalize all the AUC scores dividing them by a maximum

error threshold (0.5 in all our graphs) so that a perfect

method would have a score of 1.

8.2 Datasets

We run our extensive evaluations on datasets originally

introduced in [20] and on the recent T-less dataset [?] ,

consisting of both learning data and testing video sequences

representing several non-textured, highly occluded objects.

8.2.1 Occlusion Datasets

The datasets introduced in [20] consist in non-textured

CAD models, training and testing sequences for 3 objects.

All the images are in the VGA resolution (640×480). For

each dataset, we randomly select 3000 frames from the

training images as training set. We test our approach on

the following datasets:

• BOX Dataset: The target object for this dataset is an

electric box. In the test videos, it is manipulated by a

user, filled and emptied with objects, simulating, for

example, a technical intervention. The training images

show the box on a uniform background, with different

objects inside and outside it. A CAD model is made

by a simple parallelepiped. We use 4 corners of the

box as parts, as shown in Fig. 8(a).

• CAN Dataset: The target object of this dataset is a

food can. The label is completely blank, and the top

of the can is specular. Distractor objects are present

in the scene and large occlusions occur. Only the can

lid breaks the the cylindrical symmetry of the object,

making the pose estimation almost ambiguous. We use

the top of the can as a single part, Fig. 8(b). A CAD

model of the can is provided.

• DOOR Dataset: This datasets consists of one video

showing a daily set-up where a non-textured door is

opened and closed by a user. Despite the apparent

triviality of the sequence, our tests show that it is very

challenging to track the pose of the door along the full

video, when it moves on a cluttered background. For

this dataset, we track the 3 parts shown in Fig. 8(c), the

knob, the keyhole and the lock of the door. A simple

CAD model of the door is available as well.

The images of the training and testing videos of the

datasets were registered using the ARUCO marker tracking

tool [51]. The markers on the test sequences have been

cropped or masked, so that they could not influence detec-

tion and tracking performance when testing the methods.

We also manually labelled the ground-truth locations of

the detected parts for all the test video sequences of the

original dataset presented in [20], so that more accurate

experiments for evaluating the detector can be performed,

such as those presented in Section 8.3. The manually

labelled parts have also been employed for refining the

ground-truth poses. Because of this, some of the experi-

mental results presented in this work may be numerically

slightly different from the ones reported in [20], although

no substantial difference in the results has been detected.

All the refined datasets are publicly available at http:

//cvlab.epfl.ch/data/3d_object_tracking.

8.2.2 T-less Dataset

This challenging dataset [?] is made of a collection of

21 non-textured objects, mainly plugs, plastic boxes and

electric components. Non-textured CAD models, training

and testing sequences are given for each object. For out

tests, we employed monocular images captured with the

Canon IXUS 950 IS camera. At the best of our knowledge,

http://cvlab.epfl.ch/data/3d_object_tracking
http://cvlab.epfl.ch/data/3d_object_tracking

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Fig. 7. Qualitative results for our challenging datasets. Top: We track the box despite large changes in the

background and in the lighting conditions on both sequences of the BOX dataset. Middle: Our method correctly

estimates the 3D pose of the can using the can tab only. Bottom: The pose of the door is retrieved starting from

the door knob, the keyhole and the lock. The video sequences are provided as the supplementary material.

(a) (b) (c)

Fig. 8. Training images and control points we used for the BOX, the CAN and the DOOR datasets. The center

of each part is shown in yellow. Control points are zoomed for better visualization.

this is the first work presenting results on this recent and

challenging dataset. Even the simplest testing sequences,

showing the objects under moderate occlusions over a uni-

form background, are challenging, because of ambiguities

induced by the lack of texture, symmetry, repetitive struc-

tures, and shape similarities among the objects. We tested

our method on Sequence 3, which exhibits 5 non-textured

objects from a uniformly sampled view hemisphere. Since

the objects do not move within the scene, we employed

the 4 objects shown in Figure 9,(a)-(d) as parts in our

framework, considering the whole scene as target object

and the fifth object as an occlusion.

8.3 Part Detection

Our pipeline does not depend on a particular choice of

a detector for localizing the object parts on the image.

Nonetheless, the detector described in Section 4 provides an

excellent trade-off between speed and accuracy: We assess

here our choice by comparing it with a state-of-the-art

detector, LINE-2D [3].4 In this case, we trained an instance

of LINE-2D for each part, starting from 32 × 32 RGB

patches surrounding the part of interest. The amount of

learning data was the same as for our CNN-based detector.

4For all the tests presented in this paper, we employed the LINE-
2D implementation provided by OpenCV-2.4.12. Implementation of the
authors was used for other methods employed in Section 8.6, LSD-SLAM
and PWP3D.

At test time, we kept the best 4 candidates in each image

for each detector and computed the detection error as the

euclidean norm between the ground-truth position of the

part on the image and the closest detection candidate. The

CDF curves for the BOX dataset are shown in Fig. 10.

We also assessed the importance of the DoG normalization

introduced in Section 4. For all parts, our detector consis-

tently outperforms LINE-2D, and the DoG normalization

further increases performances in most of the cases.

In both videos, LINE-2D performs reasonably well on

the upper corners of the box—parts #3 and #4—while the

accuracy for the two other corners is much lower. This

is probably because in our test dataset, the edges of the

upper corners are visible against a bright background and

their shapes are easily recognizable. We also observed that

DoG normalization is particularly effective for the Video

#2, where the lighting and the background are completely

different from the training videos, as opposed to the Video

#1. Finally, the scores of all detectors for the Video #2,

for the bottom-left corner (Part #1) is significantly lower.

This is probably due to the fact that at about half of the

sequence a distractor object is very close to the part, altering

its appearance, and the shadow patterns change frequently

around this part. Still, we can accurately predict the pose

of the object because the other parts are reliably detected.

Moreover, we tested our detector on the objects of Scene

3 of the T-less dataset shown in Figure 9. Results are

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

(a) (b) (c) (d) (e)

Fig. 9. Parts and test sequence from the T-less dataset. (a)-(d): four items employed as parts of the scene. (e):

Testing sequence. The fifth object in the scene is not employed, acting as a supplementary occlusion.

Error [pixels]
0 5 10 15

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(a) BOX - Video #1 - Part 1

Error [pixels]
0 5 10 15

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(b) BOX - Video #1 - Part 2

Error [pixels]
0 5 10 15

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(c) BOX - Video #1 - Part 3

Error [pixels]
0 5 10 15

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(d) BOX - Video #1 - Part 4

Error [pixels]
0 5 10 15

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(e) BOX - Video #2 - Part 1

Error [pixels]
0 5 10 15

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(f) BOX - Video #2 - Part 2

Error [pixels]
0 5 10 15

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(g) BOX - Video #2 - Part 3

Error [pixels]
0 5 10 15

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(h) BOX - Video #2 - Part 4

Error [pixels]

0 10 20 30 40

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(i) T-less - Part 1

Error [pixels]

0 10 20 30 40

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(j) T-less - Part 2

Error [pixels]
0 10 20 30 40

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(k) T-less - Part 3

Error [pixels]

0 10 20 30 40

C
D

F
(x

)

0

0.2

0.4

0.6

0.8

1

LINE-2D

CNN
part-det

CNN
part-det

 + DoG

(l) T-less - Part 4

Fig. 10. Results of the experiment described in Section 8.3: detection error Cumulative Distribution Functions

(CDF) for the BOX and the T-Less datasets for different detectors. Top row: BOX - Video #1. Middle row: BOX -

Video #2. Bottom row: T-less dataset.

reported on the bottom row of Figure 10. Ambiguities

badly affect LINE-2D results. Because of shape similarities

between different objects of the dataset, we trained our

detector hard-sample mining. Part 1 is particularly diffi-

cult to detect because of the presence of the occlusion

object, whose parts closely resemble to the other objects.

On this dataset, DoG normalization does not enhance the

performances of the detector, possibly because the lighting

conditions of the training and testing sequences are closer

than those of the Occlusion datasets.

8.4 Validation of the Part Pose Representation

To validate our part pose representation based on the 2D

reprojections of 3D control points introduced in Section 5,

we trained several regressor CNNs for predicting the object

pose of all the frames of the first video of the BOX

Dataset. Each CNN was trained to predict a different part

pose representation, which yields to different strategies to

combine the contributions of the different parts:

• Averaging Poses: The output of the CNN is a 3D

rotation and a depth for each part. The in-plane

components of the translation are retrieved from the

position of the patch on the image. The full object

pose is then obtained by averaging the parts poses.

Rotations were averaged as proposed in [52].

• 3D Control Points: The predicted representation is

made by the coordinates of the 3D control points

shown in Fig. 2 in the camera reference system. Since

the 3D coordinates of the control points in the camera

system depend on the position of the patch on the

image, we employ the following indirect estimation:

The output of the CNN consists in a depth value

for the center of the patch, and a set of offsets for

all the other control points {(δx/δz, δy/δz, δz)}k.

The 3D locations of all the control points can be

straightforwardly retrieved. The poses of the parts are

then estimated and combined by computing the 3D

rigid transform aligning the points in the camera and in

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

the world reference system in a least-square sense [53].

• 2D Reprojections of 3D Control Points: The output

of the CNN is given by the coordinates of the reprojec-

tions of the control points, as described in Section 5.

The pose is computed by solving the PnP problem

after gathering all the 3D-2D correspondences given

by all the parts.

The results are shown in Fig. 11. The last choice entails a

significant accuracy gain over the previous ones.

To obtain more insight, we also performed two other

experiments:

• we replaced the predicted 2D reprojections in the case

of the 3D Control Points experiment by the ground

truth (3D Control Points - GT X and Y);

• instead of replacing the 2D reprojections by the ground

truth, we replaced the depth by its ground truth (3D

Control Points - GT Depth).

In the first case, the results did not improve much. In the

second case, the results are equivalent to the ones of 2D

Reprojections of 3D Control Points (for sake of clarity,

the 3D Control Points - GT Depth curve is not shown in

Fig. 11). This shows that predicting the depths is a much

more difficult task, than predicting the 2D locations.

8.5 Virtual Points Configuration

In order to assess the influence of the number and config-

urations of control points on the accuracy of our method,

we tested the configurations shown in Fig. 13 on the CAN

dataset. We created different configurations with an increas-

ing number of virtual points, and disposed them regularly

around the part center. The comparison is performed on the

CAN dataset, probably the most challenging one, because

the object of interest is tracked using a single part, so

we expect the pose estimation results to be particularly

sensitive to the disposition and number of control points.

We trained one regressor for each of the configurations

shown in Fig. 13 from the same learning data, and run

the pose estimation for each configuration, starting from

the same detection candidates for the can lid. Results are

shown in Fig. 12. In general, we observed that:

• configurations spanning the 3 orthogonal directions

perform better than planar configurations;

• increasing the number of control points improves re-

sults up to 7 points, while no noticeable improvement

is obtained by using configurations with more points.

8.6 Comparison Framework

We compared our approach with three state-of-the-art meth-

ods, LINE-2D [3], PWP3D [31] and LSD-SLAM [41].

LINE-2D proceeds using very fast template matching.

PWP3D is an accurate and robust model-based 3D tracking

method based on segmentation. LSD-SLAM is a recent,

powerful and reliable SLAM system: amongst other things,

it does not require prior 3D knowledge, while we know the

3D locations of the control points and their appearances.

The comparison should therefore be taken with caution, as

this method does not aim to achieve exactly the same task

as us. Nevertheless, we believe the comparison highlights

the strengths and weaknesses of the compared methods. For

every test video, we compare the poses computed by each

method for all frames. Following the evaluation framework

in [49], we align each trajectory with respect to the same

reference system. In each test, the templates for LINE-

2D were extracted by the same 3000 images we employed

for training our method. PWP3D was manually initialized

using the ground-truth pose data, while LINE-2D, LSD-

SLAM and our method do not require any initial pose.

8.7 Results

Quantitative results of our tests are shown in Table 2. LINE-

2D, LSD-SLAM, and PWP3D actually fail very frequently

on our sequences, drifting or loosing track.

In the BOX dataset, on the longest of our video se-

quences, we also re-initialized LSD-SLAM and PWP3D

using the ground-truth pose at roughly half of the video,

but their accuracy over the whole sequence remains out-

performed by our method. LINE-2D often fails matching

the templates not only when the contours of the box are

occluded, but also because its appearance is constantly

changed by objects put inside and outside it.

For the CAN dataset, we use a single part to track the

full object. In the first video the silhouette of the can is

seldom occluded: LINE-2D and PWP3D achieve similar

performances, while the lack of texture and the distractor

objects make LSD diverge. In the second video, where

occlusions occur more often but the background color is

different from the one of the can, LSD-SLAM performs

better. On both videos, our method consistently outperforms

all other methods. Notice that all methods have a quite bad

score in retrieving the rotation on this dataset, probably

because of the symmetric shape of the object.

In the DOOR dataset test, LSD-SLAM fails as soon as

the door starts to move. LINE-2D fails very often because

of the ambiguous contours present in the scene. PWP3D

immediately looses tracking. Our method manages to track

frames across the whole video. This result is somehow

surprising, since PWP-3D exploits the appearance of the

whole door, while our method just exploits a minimal part

of its structure. We only use the CAD model for predicting

contours and evaluating the computed poses, as explained

in Section 6.4. On all datasets, both the Kalman Filtering

and the DoG normalization entail a significant improvement

of the performances. Qualitative results of our method are

reported in Figure 7.

8.8 Results on the T-Less dataset

In order to assess the effectiveness of the prediction of the

pose when varying the number and shape of parts, we tested

our method on Sequence 3 of the T-Less dataset, employing

the 4 differently shaped objects shown in Figure 9,(a)-(d) as

parts in our framework, considering the whole scene as the

target object and the fifth, largest object as an occlusion.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

0 0.1 0.2 0.3 0.4

C
D

F
(x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Averaging Poses

3D Control Points

3D Control Points - GT X and Y

2D Reprojections of 3D Control Points

(a) Rotation error CDF: BOX - Video #1

0 0.1 0.2 0.3 0.4

C
D

F
(x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Averaging Poses

3D Control Points

3D Control Points - GT X and Y

2D Reprojections of 3D Control Points

(b) Translation error CDF: BOX - Video #1

Fig. 11. Rotation and translation error CDF graphs for the BOX dataset - Video #1 and for the pose

parametrizations presented in Section 8.4. Our pose representation entails a substantial performance gain.

Rot. error [.]

0 0.1 0.2 0.3 0.4

C
D

F
(x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4vp

5vp (coplanar)

7vp

7 vp-Far

9vp

13vp

(a) Rotation error CDF: CAN - Video #1

Transl. error [m]

0 0.1 0.2 0.3 0.4

C
D

F
(x

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4vp

5vp (coplanar)

7vp

7 vp-Far

9vp

13vp

(b) Translation error CDF: CAN - Video #1

Fig. 12. Rotation and translation error CDF graphs for the configurations of virtual points shown in Figure 13

for the CAN dataset-Video #1. Best results are obtained by the configurations spanning the 3 orthogonal axes.

Increasing the number of virtual points does not improve results above 7 virtual points.

(a) (b) (c) (d) (e) (f)

Fig. 13. Different configurations of control points tested on the CAN dataset, with (a) 4 control points spanning

the 3 axes; (b) 5 co-planar control points; (c) 7 control points spanning the 3D axes; (d) 9 control points disposed

in the center and on the corners of a cube; (e) 13 control points disposed in the center and on the corners of an

icosahedron; (f) 7 control points spanning the 3 axes, with a larger spacing.

We run a first series of experiments predicting the scene

pose using different numbers of parts and using the ground-

truth detections for each part, so that the effect of the shape

and the number of employed parts on the pose estimation

is better highlighted. Moreover, we also tested our full

method, as originally proposed in [20], as well as with

the Kalman filter and the patch normalization. Results are

reported in Table 3. Unsurprisingly, results confirm that

adding parts is always beneficial to the tracking. The DoG

normalization does not improve the accuracy of the pose

prediction on this dataset, while the Kalman filter still does.

8.9 A Real Use Case: Augmented Reality at CERN

We implemented our pipeline within an Augmented Reality

application in a real use case scenario, providing assistance

for technical and maintenance interventions in extreme

environments in the ATLAS particle detector at CERN.

Technical interventions are made particularly challenging

by factors as radioactivity, difficulty of access, exposition

to hazardous gases, etc. Augmented Reality is being inves-

tigated as a way of reducing the time of each intervention

and the stress of the operators, by providing them instruc-

tions and environmental data in visual form through an

head-mounted display (HMD). We built a prototype where

images captured by a camera mounted on the operator’s

helmet are streamed to a server. There, the pose of the

object of interest—the electric box of our BOX dataset—is

computed and transmitted back to the user’s HMD, where

authoring content is rendered on the head-mounted display.

The setup is shown in Fig. 14, while an example of the

outcome of our pipeline is shown in Fig. 1.

8.10 Runtimes

Our current implementation on an Intel i7-6700K laptop

with Nvidia NVIDIA Gtx 1080 takes between 100ms (one

part) and 140ms (4 parts). Detailed computational times are

given in the supplementary material. Many optimizations

are possible. For example, the control point predictions for

each part could be run in parallel.

9 CONCLUSION

We showed the advantages of predicting the reprojections

of virtual points as a way to estimate the 3D pose of

object parts. We believe that this representation, simple

and powerful, could be useful not only for object instance

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Experiment
BOX dataset CAN dataset DOOR dataset

Video #1 Video #2 Video #1 Video #2 Video #1

nb. of frames 892 500 450 314 564

LSD-SLAM 0.37 - 0.61* 0.48- 0.63 0.17 - 0.29 0.38 - 0.48 0.50 - 0.38
PWP3D 0.10 - 0.20* 0.16 - 0.52 0.13 - 0.64 0.13 - 0.51 0 - 0
LINE-2D 0.34 - 0.41 0.34 - 0.44 0.20 - 0.62 0.29 - 0.65 0.13 - 0.14
Our method 0.75 - 0.85 0.57 - 0.85 0.35 - 0.85 0.51 - 0.70 0.72 - 0.61
Our method - KAL 0.78 - 0.86 0.65 - 0.88 0.36 - 0.86 0.51 - 0.70 0.79 - 0.66

Our method - DoG 0.76 - 0.85 0.80 - 0.88 0.42 - 0.92 0.52 - 0.74 0.76 - 0.69
Our method - KAL+DoG 0.78 - 0.86 0.82 - 0.90 0.42 - 0.93 0.55 - 0.75 0.76 - 0.70

TABLE 2

Experimental results. We report the AUC scores for the rotation and the translation errors for the five video

sequences of the Occlusion datasets. A star (*) after the scores indicates that the method was re-initialized

with the groundtruth for frame 500. We report results of our method as implemented in [20], as well as with the

contributions of this work, the Kalman filter (KAL) and the patch normalization (DoG). Both innovations sensibly

enhance performances. We report all the corresponding CDF graphs in the supplementary material.

Experiment T-less dataset - Sequence 3

GT-Det - All Parts 0.87 - 0.75

GT-Det - Parts 1 2 3 0.66 - 0.57
GT-Det - Parts 1 2 4 0.83 - 0.72
GT-Det - Parts 1 3 4 0.79 - 0.63
GT-Det - Parts 2 3 4 0.82 - 0.70

GT-Det - Parts 1 2 0.19 - 0.21
GT-Det - Parts 1 3 0.16 - 0.29
GT-Det - Parts 1 4 0.59 - 0.42
GT-Det - Parts 2 3 0.32 - 0.22
GT-Det - Parts 2 4 0.71 - 0.59
GT-Det - Parts 3 4 0.70 - 0.47

Experiment T-less dataset - Sequence 3

Our method 0.50 - 0.37
Our method - KAL 0.53 - 0.37

Our method - DoG 0.45 - 0.34
Our method - KAL+DoG 0.49 - 0.37

(a) (b)TABLE 3

Pose estimation results on the T-less dataset - Sequence 3. (a): the ”GT-Det” experiments are run using ground-

truth detections for the selected parts; for these experiments we only consider the frames where the relevant

parts are visible. (b): results using our full pipeline as well as with the Kalman filter and the normalization.

(a) (b)

Fig. 14. The AR system developed at CERN for

assisting technical interventions. (a): a camera over the

user’s head streams images to a server for pose esti-

mation; the pose is sent back to an head-mounted see-

through display (HMD) for rendering. (b): an example of

augmented content seen through the HMD.

detection, but also for the 3D pose estimation of categories

of objects, where current approaches drastically suffer from

partial occlusions.

Acknowledgement: This work was supported in part by

the CDL Semantic for 3D Computer Vision and in part by

the EU projects EDUSAFE and MAGELLAN.

REFERENCES

[1] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model Globally, Match
Locally: Efficient and Robust 3D Object Recognition,” in CVPR,
2010.

[2] B. Pepik, M. Stark, P. Gehler, and B. Schiele, “Teaching 3D
Geometry to Deformable Part Models,” in CVPR, 2012.

[3] S. Hinterstoisser, C. Cagniart, S. Ilic, P. Sturm, N. Navab, P. Fua,
and V. Lepetit, “Gradient Response Maps for Real-Time Detection
of Textureless Objects,” PAMI, vol. 34, May 2012.

[4] D. Damen, P. Bunnun, A. Calway, and W. Mayol-cuevas, “Real-Time
Learning and Detection of 3D Texture-Less Objects: A Scalable
Approach,” in BMVC, 2012.

[5] R. Rios-cabrera and T. Tuytelaars, “Discriminatively Trained Tem-
plates for 3D Object Detection: A Real Time Scalable Approach,”
in ICCV, 2013.

[6] K. Pauwels, L. Rubio, J. Diaz, and E. Ros, “Real-Time Model-Based
Rigid Object Pose Estimation and Tracking Combining Dense and
Sparse Visual Cues,” in CVPR, 2013.

[7] F. Tombari, A. Franchi, and L. D. Stefano, “BOLD Deatures to
Detect Texture-Less Objects,” in ICCV, 2013.

[8] N. Kyriazis and A. Argyros, “Scalable 3D Tracking of Multiple
Interacting Objects,” in CVPR, 2014.

[9] E. Brachmann, A. Krull, F. Michel, S. Gumhold, J. Shotton, and
C. Rother, “Learning 6D Object Pose Estimation Using 3D Object
Coordinates,” in ECCV, 2014.

[10] Y. Xiang, C. Song, R. Mottaghi, and S. Savarese, “Monocular
Multiview Object Tracking with 3D Aspect Parts,” in ECCV, 2014.

[11] A. Tejani, D. Tang, R. Kouskouridas, and T.-K. Kim, “Latent-Class
Hough Forests for 3D Object Detection and Pose Estimation,” in
ECCV, 2014.

[12] J. Lim, A. Khosla, and A. Torralba, “FPM: Fine Pose Parts-Based
Model with 3D CAD Models,” in ECCV, 2014.

[13] S. Song and J. Xiao, “Sliding Shapes for 3D Object Detection in
Depth Images,” in ECCV, 2014.

[14] P. Wohlhart and V. Lepetit, “Learning Descriptors for Object Recog-
nition and 3D Pose Estimation,” in CVPR, 2015.

[15] K. He, L. Sigal, and S. Sclaroff, “Parameterizing Object Detectors
in the Continuous Pose Space,” in ECCV, 2014.

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[16] S. Hinterstoisser, S. Benhimane, N. Navab, P. Fua, and V. Lepetit,
“Online Learning of Patch Perspective Rectification for Efficient
Object Detection,” in CVPR, 2008.

[17] A. Shrivastava and A. Gupta, “Building Part-Based Object Detectors
via 3D Geometry,” in ICCV, 2013.

[18] K. Koser and R. Koch, “Perspectively Invariant Normal Features,”
in ICCV, 2007.

[19] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based
Learning Applied to Document Recognition,” in Proceedings of the

IEEE, 1998, pp. 2278–2324.

[20] A. Crivellaro, M. Rad, Y. Verdie, K. Yi, P. Fua, and V. Lepetit, “A
Novel Representation of Parts for Accurate 3D Object Detection and
Tracking in Monocular Images,” in ICCV, 2015.

[21] G. Welch and G. Bishop, “An Introduction to Kalman Filter,”
Department of Computer Science, University of North Carolina,
Technical Report, 1995.

[22] C. Harris and C. Stennett, “RAPID-a Video Rate Object Tracker,”
in BMVC, 1990.

[23] D. G. Lowe, “Fitting Parameterized Three-Dimensional Models to
Images,” PAMI, vol. 13, no. 5, pp. 441–450, June 1991.

[24] G. Klein and D. Murray, “Full-3D Edge Tracking with a Particle
Filter,” in BMVC, 2006.

[25] I. Skrypnyk and D. G. Lowe, “Scene Modelling, Recognition and
Tracking with Invariant Image Features,” in ISMAR, November 2004.

[26] L. Vacchetti, V. Lepetit, and P. Fua, “Stable Real-Time 3D Tracking
Using Online and Offline Information,” PAMI, vol. 26, no. 10,
October 2004.

[27] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-
stieg, “Pose Tracking from Natural Features on Mobile Phones,” in
ISMAR, September 2008.

[28] E. Rosten and T. Drummond, “Fusing Points and Lines for High
Performance Tracking,” in ICCV, October 2005.

[29] C. Choi, A. Trevor, and H. Christensen, “RGB-D Edge Detection
and Edge-Based Registration,” in IROS, 2013.

[30] V. Prisacariu, A. Segal, and I. Reid, “Simultaneous Monocular 2D
Segmentation, 3D Pose Recovery and 3D Reconstruction,” in ACCV,
2012.

[31] V. Prisacariu and I. Reid, “PWP3D: Real-Time Segmentation and
Tracking of 3D Objects,” IJCV, vol. 98, pp. 335–354, 2012.

[32] G. Chliveros, M. Pateraki, and P. Trahanias, “Robust Multi-
Hypothesis 3D Object Pose Tracking,” in ICCV, 2013.

[33] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. J. Kelly, and
A. J. Davison, “SLAM++: Simultaneous Localisation and Mapping
at the Level of Objects,” in CVPR, 2013.

[34] K. Lai, L. Bo, X. Ren, and D. Fox, “A Scalable Tree-Based Approach
for Joint Object and Pose Recognition,” in AAAI, 2011.

[35] A. Krull, E. Brachmann, F. Michel, M. Y. Yang, S. Gumhold, and
C. Rother, “Learning Analysis-By-Synthesis for 6D Pose Estimation
in RGB-D Images,” in ICCV, 2015.

[36] D. Tan and S. Ilic, “Multi-Forest Tracker: A Chameleon in Tracking,”
in CVPR, 2014.

[37] N. Payet and S. Todorovic, “From Contours to 3D Object Detection
and Pose Estimation,” in ICCV, 2011.

[38] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Ob-
ject Detection with Discriminatively Trained Part Based Models,”
PAMI, vol. 32, no. 9, pp. 1627–1645, 2010.

[39] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small
AR Workspaces,” in ISMAR, 2007.

[40] R. Newcombe, S. Lovegrove, and A. Davison, “DTAM: Dense
Tracking and Mapping in Real-Time,” in ICCV, 2011.

[41] J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale
Direct Monocular SLAM,” in ECCV, 2014.

[42] A. Krizhevsky, I. Sutskever, and G. Hinton, “ImageNet Classification
with Deep Convolutional Neural Networks,” in NIPS, 2012, pp.
1106–1114.

[43] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and
Y. LeCun, “Overfeat: Integrated Recognition, Localization and De-
tection Using Convolutional Networks,” in International Conference

on Learning Representations, 2014.

[44] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in ICLR, 2015.

[45] A. Giusti, D. C. Ciresan, J. Masci, L. M. Gambardella, and
J. Schmidhuber, “Fast Image Scanning with Deep Max-Pooling
Convolutional Neural Networks,” in ICIP, 2013.

[46] S. Umeyama, “Least-Squares Estimation of Transformation Param-
eters Between Two Point Patterns,” PAMI, vol. 13, no. 4, 1991.

[47] F. Bastien, P. Lamblin, R. Pascanu, J. Bergstra, I. J. Goodfel-
low, A. Bergeron, N. Bouchard, D. Warde-Farley, and Y. Bengio,
“Theano: New Features and Speed Improvements,” arXiv Preprint,
vol. abs/1211.5590, 2012.

[48] F. Moreno-noguer, V. Lepetit, and P. Fua, “Pose Priors for Simulta-
neously Solving Alignment and Correspondence,” in ECCV, 2008.

[49] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
Benchmark for the Evaluation of RGB-D SLAM Systems,” in IROS,
2012.

[50] A. Ude, “Filtering in a unit quaternion space for model-based object
tracking,” Robotics and Autonomous Systems, vol. 28, no. 23, 1999.

[51] S. Garrido-Jurado, R. Muñoz-Salinas, F. Madrid-Cuevas, and
M. Marı́n-Jiménez, “Automatic Generation and Detection of Highly
Reliable Fiducial Markers Under Occlusion,” PR, vol. 47, no. 6, pp.
2280–2292, 2014.

[52] F. Markley, Y. Cheng, J. Crassidis, and Y. Oshman, “Averaging
quaternions,” Journal of Guidance, Control, and Dynamics, vol. 30,
no. 4, pp. 1193–1197, 2007.

[53] D. Eggert, A. Lorusso, and R. Fisher, “Estimating 3D Rigid Body
Transformations: A Comparison of Four Major Algorithms,” Ma-

chine Vision and Applications, vol. 9, no. 5-6, pp. 272–290, 1997.

Alberto Crivellaro received his MSc in Math.
Engineering from Politecnico di Milano, Italy,
his Diplôme d’Ingénieur from the EC Lyon,
France, in 2011, and his a Ph.D. at CVLab,
EPFL, Switzerland, in 2016, under the super-
vision of prof. P. Fua and prof. V. Lepetit . His
research interests include Augmented Real-
ity, visual tracking, and machine learning.

Mahdi Rad received his B.S. and M.S.
degrees in Computer Science from EPFL,
Switzerland, in 2012 and 2014. Currently, he
is a PhD student in the Computer Vision
and Graphics Laboratory at Graz University
of Technology. His research interests include
Augmented Reality, deep learning, and 3D
object tracking.

Yannick Verdie received his B.S. from
Virginia-Tech, USA, and his Ph.D. degrees
from INRIA, France in 2010 and 2013. After
a two-years postdoc position at the CVLab,
EPFL, Switzerland, he currently works as
R&D Engineer at NCam-Tech, Paris, working
on vision-based systems for real-time aug-
mented reality in movies and TV-shows.

Kwang Moo Yi received his B.S. and Ph.D.
degrees from the Department of Electrical
Engineering and Computer Science of Seoul
National University, Korea, in 2007 and 2014.
Currently, he is a postdoc researcher in the
CVLab at EPFL. His research interests in-
clude Augmented Reality, keypoint learning,
deep learning, visual tracking, and motion
detection.
Pascal Fua is a Professor of Computer Sci-
ence at EPFL, Switzerland. His research in-
terests include shape and motion reconstruc-
tion from images, analysis of microscopy im-
ages, and Augmented Reality. He is an IEEE
Fellow and has been an Associate Editor
of the IEEE journal Transactions for Pattern
Analysis and Machine Intelligence.

Vincent Lepetit is a Professor at the Institute
for Computer Graphics and Vision, TU Graz.
Before that, he was a Research and Teach-
ing Associate at EPFL. His research interests
include vision-based Augmented Reality, 3D
camera tracking, Machine Learning, object
recognition, and 3D reconstruction. He is an
editor for the International Journal of Com-
puter Vision (IJCV) and the Computer Vision
and Image Understanding (CVIU) journal.

	Introduction
	Related Work
	Robust 3D Pose Estimation With Parts
	Part Detection
	Part Pose Estimation
	Representation of the Part Pose
	Prediction of the Reprojections of the Control Points

	Object Pose Estimation
	Using a single Gaussian Pose Prior
	Outlier rejection for the detected parts
	Using a Mixture-of-Gaussians for the Pose Prior
	Identifying the Best Pose Estimate

	Tracking Frames across a Video Sequence and Pose Filtering
	Extended Kalman Filter for 3D Tracking
	State Vector
	Notations
	Predictor: State Update
	Corrector: Taking into Account Observations
	Initialization - Outlier Rejection

	Experimental Results
	Evaluation protocol
	Datasets
	Occlusion Datasets
	T-less Dataset

	Part Detection
	Validation of the Part Pose Representation
	Virtual Points Configuration
	Comparison Framework
	Results
	Results on the T-Less dataset
	A Real Use Case: Augmented Reality at CERN
	Runtimes

	Conclusion
	References
	Biographies
	Alberto Crivellaro
	Mahdi Rad
	Yannick Verdie
	Kwang Moo Yi
	Pascal Fua
	Vincent Lepetit

