Introduction to Deep Learning

Vincent Lepetit
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Problems can never be solved with the same
way of thinking that caused them.
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* No need to engineer features;

« Very flexible framework. Originally developed for supervised learning, but can
be extended to many other problems.

o Why now?
« Faster computers (with GPUs); More training data; Better optimization
algorithms; Easy to use and powerful libraries in Python; It took time to
researchers to get convinced it actually works.



Artificial Intelligence/Machine Learning/Deep Learning

Artificial Intelligence

Expert Systems A*
min-max

Machine Learning

/Neafesz‘ Neighbor classifier \
Naive Bayes classifier
Support Vector Machines ,
Boosting
Random Forests
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From Early Approaches to
Modern Deep Learning



Linear Classifier / Perceptron

A
weight 0
o ©O O

blood pressure



weight

The equation of the (boundary) is

w; X (blood pressure) + w, x weight + b =0

Samples such that
w; X (blood pressure) + w, x weight + b > 0

will be classified as ‘at risk’

Samples such that
w; X (blood pressure) + w, x weight + b < 0

will be classified as ‘not at risk’

>

blood pressure



The equation of the (boundary) is

’LU1X:I?1+w2X$2+b=O

Samples such that
W XT;+ W, XTy +b>0

will be classified as ‘at risk’

Samples such that
W XT;+wW, Xxy +b<0

will be classified as ‘not at risk’




0O = W11+ Woko

Prediction based on the sign of O
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L1 N
w
L2 N2
-~
T, : 0 = wWiT1 +waT2 + -+ wpTy +0
W,

Prediction based on the sign of O
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PERCEPTRON

,,,,,,,,,,

Z77 Inspired by the work of
@ | Donald Hebb (1949)

‘o

wiT1 + wexe + -+ wWpxy,y + 0

Prediction based on the sign of O
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PERCEPTRON

L1
L2
X:
T 0 = wWiTy+wWaTy+ -+ WnTy +b
= w'x<4b

Prediction based on the sign of O
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Perceptron

W,

13

= wi1x1 + WwaXo + -+ Wy + 0

Parameters of the perceptron:
we need to find good values for them
(we will see that later)



14

A perceptron can only correctly classify data points that are linearly separable:

O ® o
O O ® O
S ®eo o
o @
0o® ® o
® o0
linearly separable nonlinearly separable
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What Is the

Best Linear Classifier?
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What is the Best Linear Classifier?

In general, the perceptron
algorithm will not find this solution
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Two-Layer Network (~1980)
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Two-Layer Network (~1980)

0] = W1 1T] T W1 2T2 + ... T Wi n



Two-Layer Network (~1980)

01 = W1 121 + W1 2%2 + ... + W1 nTy + b1
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Two-Layer Network (~1980)

0] = W1 1T] T W1 2T2 + ... T Wi n
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Two-Layer Network (~1980)

0] = W1 1T] T W1 2T2 + ... T Wi n

02 — W2,101 —+ w2 202 + ...+ W2 nd
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Two-Layer Network (~1980)

0] = W1 1T] T W1 2T2 + ... T Wi n

02 — W2,101 —+ w2 202 + ...+ W2 nd

.o T Wy,



the first network’s parameters

= w1 121 + W1 222 + ...+ W1 Ty + b1

w2101 —+ w2 22 + ...+ W2 nLn —+ bz

Om = Wi 101 + W 2T2 + ..o+ Wiy n Ty, + Oy
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Two-Layer Network (~1980)

0] = W1 1T] T W1 2T2 + ... T Wi n

02 — W2,101 —+ w2 202 + ...+ W2 nd

.o T Wy,
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Two-Layer Network (~1980)
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Two-Layer Network (~1980)

(sigmoid)
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Two-Layer Network (~1980)
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Two-Layer Network (~1980)

Om — hm — g(om)
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Two-Layer Network (~1980)
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Two-Layer Network (~1980)

L1
L9

——

|

P

O=Wihy +Wshs + ..



the rest of the network’s parameters

O:&hl—FEhQ—F—FWmhm—FB
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Two-Layer Network (~1980)

L1
L9

——

|

P

O=Wihy +Wshs + ..



iIntermediate layer

“features”

« the number m of “features” is a hyperparameter: it needs to be chosen;

« the values of the features are difficult to interpret (individually);

34



https://playground.tensorflow.org/
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https://playground.tensorflow.org/

Universal Approximation Theorem

(almost) any classification problem can be solved by a two-
layer network

36



Universal Approximation Theorem

(almost) any classification problem can be solved by a two-layer network

BUT:

1. This assumes we have enough training data.
2. For difficult problems, using a two-layer network is intractable.

hi
ho

hm

Fortunately, we can use more layers ie a deep network instead.

37
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Multi-class problems

With a two-layer network, and 5 classes:

01—>h1

02%]12

Om — h

— transformation 1

—

transf 2

> =

transformation 3

O1 = Wi 1h1 + Wi2ha +.
Oy = Wy 1h1 + Wooha +

Os = Ws1h1 + Ws.2hs -
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Multi-class problems

With a two-layer network, and 5 classes:

Nom—ﬂz

=P = {raNSf 2 | - transformation 3 -

0, = Wl,lhl —+ Wl,zhz —+ ...+ Wl’mhm + B4
Oy = W2,1h1 + WQ’QhQ + ...+ Wg’mhm + B

01—>h1

OQ%hQ

Os = Ws 1h1 +Wsoho + ...+ W5 il + Bs
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Multi-class problems

With a two-layer network, and 5 classes:

01—>h1

OQ%hQ

Om — h

— transformation 1 )y = {QNSf 2 - - transformation 3 =)

0,
0,

O; o

L the class

predicted for this

sample by the
network is Class
#2

41
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the network's parameters

01 = W1,1T1 + W1.2T2 4+ ...+ W1 nTn + bl

02 = W2 1T1 + W2 2T2 + ...+ W2 nTpy + by

Om = Wm 121 + W 2T2 + ... + Wy n Ty, + by

01—>h1

02%]12

Om — h

O1 = Wi 1h1 + Wi2ha +.
Oy = Wy 1h1 + Wooha +

Os = Ws1h1 + Ws.2hs -

— transformation 1

transf 2

—

> =

transformation 3

—>

Given a training set, how can we find good values for these parameters?

43



finding the parameters of a perceptron
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random initialization

45



pick training samples

randomly

O

O
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improve the parameters
for these samples

o o o
@ o
o

O




iterate

O

O

o ©O

-—

Ad
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unti

SOlU

we get a gooa
tion
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It can happen that we have

* good performance on the training set;
» poor performance on the validation set;
« poor performance on the test set.

This is called ‘overfitting’ (surapprentissage). “The method does not generalize well”

This may be due to many reasons e.g.
« the training and validation sets are not representative of the test set, or
« when the method has too many parameters.

N
/\ /\

N N O
0 0 000 0 -0
0, 0 © 0C o

o o © @ o
N—— N
training set validation set test set
to estimate the parameters to estimate the use it to evaluate the

ie “find the boundary” hyperparameters classifier



GOl
LAY

NG BACK TO TH
—R NETWORK

= TWO-



transformations

transformation 1: 0 = Wi1x + by sl 4 i
transformation 2: h = g(o) = g(W1x + bl) a
transformation 3:

O=Wsh+by

(linear/affine)
transformation

— transformation 1 ) transf 2 > - transformation 3 )

O = (w1 1, W1,2,5- - - ,wl,n,bl, .. -;bm7W1,17W1,27 .. )
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Multi-Layer Networks/
Multi-Layer Perceptrons

Two layers:

== transformation 1

01—>h1

02—>h2

Om — hom,

transf 2 r -

transformation 3
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Multi-Layer Networks/
Multi-Layer Perceptrons: a first ,,deep network"

Three layers:

01—>h1

02—>h2

Om — hom,

== transformation 1 =P transf?2 }- transformation 3 m| transf 4 »{ transformation 5 )-»

Can be used exactly the same way as a two-layer network;

Advantage: Can work better than a two-layer network.

55



Test accuracy (percent)

97

96

95

94

93

92

91

0.0

o—e 3 convolutional

V—V 11, convolutional

+—+ 3, fully connected

0.2 0.4

Number of parameters

0.6 0.8 1.0

x 108
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the power of compositions
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To each pixel correspond 1 value (3 for color images).
(for grayscale images: 0 for black, 255 for white)
210 values for an image of size 14 x 15 pixels.

262’000+ values for an image of size 512 x 512 pixels.

60



Deep Learning a /a LeCun

(~1992)

61



application example

— non-covid
— Deep Network _ covid

X

lung ultrasounds
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application example (2)

ok
defectuous

e Deep Network _L
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O — W6h5 —|—b6
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0000000000
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h, =¢g(Wx+b) ?
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X h11

Y

Product of convolution: hy 1 = g(f1 1 *x+ by 1)

71



-1 +1
-1 +1
-1 +1

hll

Y

hii1=9g(f11%x+by1)

/2




-1 +1
-1 +1
-1 +1

(—1) x 255 + 0 x 255 + (+1) x 255+
(—1) x 255 4+ 0 x 255 + (+1) x 0+
(—1) x 255+ 0 x 0+ (+1) x 0
—255 4 0+ 255

—255+0+0

—255+0+0

~510 .




oy g(F o x X))
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For example, max-pooling:

:2u7
2u,
2u + 1,
2u + 1,

2v],
2v + 1],
2v],
20 + 1]

!

/6



—1 =
é;[ i L

X
111 112

hy = [g(f11 %xx),..., g(f1,m *x)]
hs = pooling(h;)

Inspired by the theory of Hubel and Wiesel on V1
(Nobel prize in 1981)



h, = pooling(hs)
h) = Vec(hy)

78



A WO DM =+ O

i

W, ﬂ*
s
[ 6
| -
= s==s == |

Hlh ®
LD e

h1 h3 h4 h 1

O

‘features’ ‘features’ “features’ ‘features’ ‘features’

First features may be ‘interpretated’, but the rest is usually more difficult.
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How Can We Find the Network’s Parameters?

A WO N = O

: B = 5.
IXV - = 7.
8
h1 h2 :
O
hl — [g(fl,l * X)7 s 7g<f1,m * X)]
hs = pooling(h;) £(0) = L(c;. f(x;: ©
h; = [9(f331 *ho),...,g(f5, x hy)] (©) ; (e f(xi; ©))
hy = pooling(hs) O=(fi1,. ... Frms..., W5, bs, W, bb)

h) = Vec(hy)
h5 = g<W5hﬁl + b5)
O = W6h5 + b6

81
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How Can We Find the Network’s Parameters?

EEEEENE NN
TILT

X

h; h,

L£(©) =) Llci, f(xi: ©))
O = (f1,17 s 7f1,m7 R 7W57 b57W67 b6)

As before:
* [|nitialize @ randomly;
« Optimize @ using gradient descent.

83



backpropagation

X

L£(©) =) Llci, f(xi: ©))
O = (f1,17 s 7f1,m7 R 7W57 b57W67 b6)

Back-propagation: An efficient method to compute the gradient of the objective
function;

84



backpropagation

a » O N = O

© 00 N O

L£(©) =) Llci, f(xi: ©))
O = (f1,17 s 7f1,m7 R 7W57 b57W67 b6)

Several variants of gradient descent have been developed recently (Adam,
RMSProp).

o
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Python Libraries

TensorFlow (Google), Keras (Google — higher level), PyTorch (Facebook), ..

from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D

model = Sequential ()
model.add (Conv2D (32, (3, 3), activation='relu’, input shape=(28, 28, 1)))

from keras.layers import Flatten

model.add (Flatten())

from keras.layers import Dense

model.add (Dense (128, activation='relu'))

model.add (Dense (10, activation='softmax'))

model.compile (loss="'categorical crossentropy’, optimizer='adam',6 metrics=['accuracy'])

model.fit (X train, Y train, batch size=32, epochs=10, verbose=1)



— < T

ow to Choose the Number of Layers?
ne Number of Filters per Layer?

ne Sizes of the Filters?

* experience;
e trial-and-error;
« Auto-ML: automated methods to find a good architecture.

87
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28.2
2.8

16.4

I | | | | >

2010 2011 2012,
AlexNet

Classification task on ImageNet
challenge top-5 error.

motor scooter

motor scooter

go-kart

moped

bumper car

golfcart

cheetah
snow leopard
Egyptian cat
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AlexNet: Some results on Imagenet

motor scooter

container shlr
ip

mite container s motor scooter legpard
black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat bumper car snow leopard
starfish drilling platform golfcart Egyptian cat

- z J 5

.

grilie musnroom cnerry adagascar cat
convertible agaric dalmatian squirrel monkey
grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey

90



AlexNet: Learned Filters for the First Layer

BIENENE SN NN SES X H==S
O NN NE S A N S S ==
EERENEEDEO SN EEESNNERN
EEESEERNFOEN SEENAES
ENNNEEENEESESCSENOEAEFIOn
HAEEDENESEEN EEIm S I
EERNERDEEZEE NS FEONEEEESEDE
EERENSESSNEEDENFESEEENESED
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Classification task on ImageNet challenge top-5 error

28.2

2010 2011 2012, 2013 2014 2015
AlexNet VGG GoogleNet ResNet

92



ResNet [He et al, CVPR 2016}
ILSVRC 2015 Winner

ResNet, 152 layers
(ILSVRC 2015)
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The Residual Module (resnet block)

Uses 'skip' or 'shortcut’ connections:

AR :.”12 — g(th —+ bg)

|9 |& hs = W3hs + bs
h %E%hi% h, 14:g(h3+h)

S s

« Makes it easy for network layers to represent the identity mapping;
« Limits vanishing and exploding gradients.
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Transformers

N

Class )

Bird MLP ]
Ball [

Coar ‘ Head

Transformer Encoder

iz - @) 0 @é @é

* Extra learnable
[class] embedding [ Llnear PrOJectlon of Flattened Patches

: '
S — .‘?. Ai> )
s & LS
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recognizing objects

traffic light (99) leaf beetle (99) racket (51) tree frog (99) cash machine (97) beacon (99) padlock (99) ice lolly (99)
s/ ) —._; r-
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recognizing objects

traffic light (99) leaf beetle (99) racket (51) tree frog (99) cash machine (97) beacon (99) padlock (99) ice lolly (99)
' T i

(a) Output prediction on original images.

LY

(b) Prediction when foreground is whitened.
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recognizing objects

traffic light (99) leaf beetle (99) racket (51) tree frog (99) cash machine (97) beacon (99) padlock (99) ice lolly (99)
o/ T i

(a) Output prediction on original images.
racket (45) tree frog (31) cash machine (25) beacon (74) padlock (90) ice lolly (75)

CU b R

(b) Prediction when foreground is whitened.
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some faillures

Sea Lion (99%

)

y

A Y e ]
Bl 4k o

ImageNet-A

ellyfish (99%)

ImageNet-O

Verdigris

Jigsaw Puzzle (99%
iy '_7/ ,,, b
’ 14

/ .
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Image segmentation

these can be
seen as 1
classification
problem for
each pixel

102



U-Net: Results
YR L B IR

v < - pu b -
o L ‘i" o A0 .4
[ Al ) $. ol s o -
- A 4-, SV AT o
v . . %1 2 ‘ - .1.‘ ?' re ..\ » ;-_' '] “
- : o e et S . &
- . - ¢ -~ 3 >

W

LY

Input image Our result: 0.000353 warping error

(New best score at submission march 6th, 2015)
Sliding-window CNN: 0.000420

Training time: 10h, Application: 1s per image

Olaf Ronneberger, University of Freiburg, Germany, 22.5.2015 18
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Image segmentation

104



U-Net: Architecture

105



U-Net: Architecture

hy = [g(f11%%x),...,9(f1 n *xx)]
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U-Net: Architecture

hy = [g(f11%%x),...,9(f1 n *xx)]
ho = [g(fo1xhy),...,9(fom, x 1)
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U-Net: Architecture

h; = [g(fl,l * X)7 R 7g(f1,m x X)]
hg — [g(f271 >k hl), .« . 7g(f2,m2 > hl)]
hs = pooling(hs)

1083



U-Net: Architecture

h; = [g(fl,l * X)a R 7g(f1,m x X)]
ho = [g(fo1xhy),...,9(fom, xhy)
hs = pooling(hs)

h, = [9(f4,1 X h3)7 ‘o 79(f4,m4 * hB)]

109



U-Net: Architecture

h; = [9(f1,1 *X), .. 7g(f1,m * X)]
h2: [g(f21*h1)7° 7g(f2m2 *hl)]
hs = pooling(hs)

hy = [ (f4 1 X h3)7- .79(f4 mg ¥ hS)]
hs = [g(f51 xha),...,9(f5m; * hy)]
hg = pooling(hs)
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U-Net: Architecture

his = |g(fiz1 *xhia), ..., 9(fi3,m,5 * D12)]
hiy = [g(fia1 *his), ..., 9(fia,m,, * Di3)]
h,5 = pooling(h4)
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U-Net: Architecture




U-Net: Architecture

h16 — UpSampllng(h15)

113



U-Net: Architecture

h,6 = UpSampling(h5)
hi7 = [g(fi71 *hig), ..., 9(f17.m,, * hi6)]
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U-Net: Architecture

his = UpSampling(h;5)
hi7 = [g(fi71 *hig), ..., 9(f17.m,, * hi6)]
hig = [9(f18,1 X h17), e 7g(f18,m18 X h17)]
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U-Net: Architecture

116



U-Net: Architecture




U-Net: Architecture

What is the output of the network exactly?

For each pixel, we have 6 possible classes.

o , where u is a pixel, is a vector of 6 values.




U-Net: Loss Function

L=— Z(x,d)eT Zu log y(x,d, u)

with y(x,d, u) = softmax(0(*) 4cu)

where

>0 is the network output for image x for pixel u, and

>d () is the desired class for pixel u in image x for pixel u

119



U-Net: Skip Connections




ALPHA FOLD

T1037 / 6vr4d T1049 / 6y4af
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

@® Experimental result

® Computational prediction
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Protein
seguence and
MSA features

covariance
matrix of the
MSA features

the predicted
distagram is
used to define a
potential: a
protein structure
with a similar
distagram has a
low potential

{

i deep
| network

‘distagram’: distribution over
the distances and torsions
between every pair of
residues
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Protein
seguence and
MSA features

covariance
matrix of the
MSA features

the predicted
distagram is
used to define a
potential: a
protein structure
with a similar
distagram has a
low potential

deep
network

‘distagram’: distribution over
the distances and torsions
between every pair of
residues

start with a random 3d structure for the
protein sequence and deform it to
minimize its potential using gradient
descent

A Q/
A

'\4/ l\(@

J

280 500 /oo 1200 .

0.8
07 - — _—17n)
() - -
— = o<
o 0.5 1 /.ﬂ — - 50 <=
3 0.4- ol | — Mseore L4 g
s 0.3 - r.m.s.d. L 30 U)
02 |20 E
0.1 - 10
0+ T T T T 0
0 200’ 400 ‘ 600 800 1,000 1,200
140 o e | F -

An animation of the gradient descent method
predicting a structure for CASP13 target T1008
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DO WHEN ONLY
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AUGMENTATION

4 rigid examples =% Quantib

Original Translated Rotated Flipped
AUGMENTATION o, b
3 stretch and sheering examples %, Quanti

Original Zoomed out Stretched Sheared

AUGMENTATION

2 elastic deformation examples P Quantib

Too much elastic

Original Elastic deformation i
deformation

125



transter learning / domain transter

Transfer learning:
- we have few training data on our problem, but
- we have a lot of training data for a similar problem.

126



transter learning / domain transter

A simple method for transfer learning:

non-covid
Deep Network >r covid

1. Training a deep network on a problem where a large amount of training data
IS available: L

S e A Deep Network 1 > f

127



transter learning / domain transter

A simple method for transfer learning:

Deep Network

Deep Netwolk 1

non-covid
> covid

' 4

part 1

»|

K¢

=

part 2

features’ or ‘embedding’

128



A simple method for transfer learning:

non-covid
Deep Network >r covid

3. Keep the parameters of Part 1, initialize randomly Part 2b with the new number
of classes

non-covia
part 1 — |:||:> part 2b | ) r covid

‘features’ or ‘embedding’

129



A simple method for transfer learning:

non-covid
Deep Network >r covid

4. Keep the parameters of Part 1, optimize only the parameters of Part 2b on the
available data
Alternatively, we can ‘fine-tune’ the parameters of Part 1.

-covid
=) opat1 | |:||:> part 2b |EE) r covid

‘features’ or ‘embedding’

eeeeeeeeeeee
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A simple method for transfer learning:

non-covid
Deep Network >r covid

non-covid
[ Deep Network > covid

131



Self-learning for learning features.
Related to transfer learning but the first problem is ‘artificial’.

For example:

— Given the center image, and one the 8 images, predict
anmle B ©_ 1 from where is taken this second image:

part 1 |:>|:||:>
part 1 |:>|:|I:>

part 2 |:>

132
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Probleme kann man
niemals mit deselben
Denkweise 1ldOsen,
durch die sie
entstanden sind.

TRANSLATION

Deep Network

134

Problems can never
be solved with the
same way of
thinking that
caused them.




IMAGE CAPTIONING

The man at bat readies
to swing at the pitch
while the umpire looks
on.

Figure 1: (a) Right renal angiomyo-
lipoma (gross specimen postexci-
sion). (b) High-resolution computed
tomography chest images of Case
1 showing multiple variable sized
cysts uniformly scattered in both
lungs. (¢) Computed tomography
abdomen showing bilateral renal
angiomyolipomas with fat densi-
ties, tortuous vessels, and pseudo-
aneurysm (white arrow). There is

"' also the presence of perinephric

| hematoma (black arrow). (d) High-
M resolution computed tomography
image of Case 2 showing bilateral
lung cysts.
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some applications of gans

Generating new images/data:

Real-time Reenactment

Generating potential drugs

137



GANS

We would like to train a network G to generate
iImages of digits from noise vectors z:

Z

Generator

G(z)

Gaussian
distribution

138



GANS

Real Data
D
i

{real data,
generated}

Z
‘ Generator Discriminator (real data,
G(z) D(G(z)) generated}
Gaussian
distribution

139




GANS

Real Data
D
i

{real data,
generated}

Z
‘ Generator Discriminator (real data,
G(z) D(G(z)) generated}
Gaussian
distribution

minmax V (D, G) = Egnpy (@) 108 D(@)] + Eanp, () log(1 — D(G(2)))]
140




generating molecules

Generative chemistry: drug discovery with deep learning generative
models. Yuemin Bian and Xiang-Qun Xie. arXiv 2020.

1) We need a representation for molecules:

H Structure
A C N¢ 3 ¢ ¢c € ¢ ¢ 1
@ Cl|1]10]0]|0]01D]0]0J0]0
N(O|1|O0Of(O|O|O|O|O|O]|O
¢ |0 POspENl O BNl aNisd st O
1(0|0|0f(1(0O|0]|O|O0O|0O]|1

CNclccccecl One-hot encoding
SMILES string

this is a text-like representation.
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generating molecules

2) =2 we can train a GAN to learn generating new
representations of molecules

Discriminator
Real Data C a {real data,
D(x) generated}

Z

‘ Generator Discriminator {real data,
G(z) D(G(z)) generated}

Gaussian ) .
distrtfbultion The Generator and Discriminator networks have the

same form as networks for text generation and text
analysis.
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perspectives

« Black box models and explicability;
« Learning with less training data;

« Good practices for ‘Al engineering’ as for ‘software engineering’.
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