Deep Learning and Computer Vision

Vincent Lepetit

September 14, 2021

Today

“Deep"” Embeddings:

> Embeddings and autoencoders;
» Image Embeddings;
» Embeddings and Siamese Networks;

» Variational Autoencoders;
Deep Learning applied to Computer Vision problems:

» Object Detection;

» Image Segmentation;

To Go Further

Articulated Object Detection;
Dealing with Unstructured Input;

>
>
» Spatial Transformers;
> Self-Learning;

>

Differentiable Pipelines and End-to-End Learning.

“Deep” Embeddings

» Embeddings and autoencoders;
» Embeddings and features;
» Embeddings and Siamese Networks;

» Variational Autoencoders;

Beyond Supervised Learning

e We can use a Deep Network to approximate any continuous function;

X Deep Network f 0}

e We can use any loss function as long as it is differentiable;

- very flexible!

“‘Embedding” Concept

‘embedding”

compact representation of the image,
can be used to compare images, for
example.

How can we compute a good
embedding for a given image?

Autoencoders

.. NI...... B

~nda | amhadAIinA

X

Loss function:

L£(01,02) ZHQ f(x:01);0,) —x||°. (1)

Dimensionality reduction and reconstruction:

code + f(x;01)
x" < g(code; O2)

(2)

Does not work well in practice without additional constraints.

Y. Bengio. “Learning Deep Architectures for Al”. In: Foundations
and Trends in Machine Learning (2009).

Siamese Networks, Embeddings, and Metric Learning

Object O M AO): embedding for O

How can we train f so that the distance ||f(O1;0) — f(O2;0)]|| is
representative of the similarity between O; and 057

I. Bromley, I. Guyon, and Y. LeCun. “Signature Verification using
a Siamese Time Delay Neural Network”. In: Advances in Neural
Information Processing Systems. 1994.

Positive and Negative Pairs

p
X1

Make

> Ep(lez7x2;@) = Hf(xb)—
> En(x?ax27) - ||f(xla

N P

)_

f(x5;0)] small, and
f(x3;0)] large.

Contrastive Loss

Margin
m

/

LP " cr

> LP(x],x5;0) = 3 f(x};0) - f(x5;0)|?
> L7(x],x4;0) = 5[max(0,m — || f(x]:0) - f(x§;0)|]*)]

Need hard-example mining to avoid flat gradients.

See also triplet loss.

Application

SIFT. Average: 23.1 matches

s). Average: 60.6 maiche

K. M. Yi et al. “LIFT: Learned Invariant Feature Transform”. In:
European Conference on Computer Vision. 2016.

“Deep” Embeddings

» Embeddings and autoencoders;

» Embeddings and features;

» Embeddings and Siamese Networks;

» Variational Autoencoders.

10

Variational Autoencoders (VAE)

Very different from autoencoders! Only resemble them during
training.

Given a training set X;, we want to generate new samples X that
follow the same distribution as the X;'s. (See also Generative
Adversarial Networks)

latent variable /
embedding

T2 /M ANT d.. L

(training set: fishing images)

11

References

Original paper:
Diederik P. Kingma and Max Welling. “Auto-encoding variational

Bayes”. In: International Conference for Learning Representations.

2014.

A good tutorial:
Carl Doersch. “Tutorial on Variational Autoencoders”. In: arXiv
Preprint. 2016.

The original paper is very general, we will focus here on some
specific but common choices.

12

Variational Autoencoders (VAE)

Given a set X;, we want to generate new samples X that follow
the same distribution as the Xj's.

We will do this by training a network f(w; ©) such that, given a
latent variable z ~ P(z) (usually z ~ N (0,1I)), f(z; ©) ~ P(X).

Z

o

Diederik P. Kingma and Max Welling. "Auto-encoding variational

Bayes”. In: International Conference for Learning Representations.

2014.

13

Looking for ©

z

-

We have:
P(X) = / P(X | 2:0)P(2)dz. 3)

We want to find the parameters © of network f(z;0).
This is done by optimizing:
- 4
argmgxglogP(Xz) (4)

How can we compute P(X;)?

14

Looking for ©
We have:
P(X) = / P(X | 2:0)P(2)d=. (5)

One way to estimate P(X;) is to sample many z;, and take

P(X) = 3 P(X | 2;0). (6)

Usually, P(X | 2;0©) is taken to follow a Gaussian distribution:
P(X |20)=N(X| f(20),0°T). (7)

15

Looking for ©

One way to estimate P(X;) is to sample many z;, and take

P(X) ~ 3 P(X | 2;0). (8)
J

z2.~“-'_> ‘ * X,
©)

f(z2;

Unfortunately, in large dimensions, for most z, P(X | z;0) = 0,
especially when © is initialized randomly.

Key idea in Variational Autoencoders: Sample values of z that are
likely to have produced X.

16

z given an X

Key idea in Variational Autoencoders: Sample values of z that are
likely to have produced X.

We consider:
P(z| X;02) =N (2| u(X;02),%(X;02)), (9)

where © and X are implemented as neural networks. 3 predicts a
diagonal matrix.

ik O)

‘. w(X;; 02) .XZ'
S

17

Deriving the Optimization Problem
After some derivations (see [Doersch16]):
log P(X) = DP(z|X;02)[| P(2|X)]
= E.p(z| x;00)[l0g P(X|2;0)] = DIP(2|X;02)[| P(2)], (10)
where D is the Kullback-Liebler divergence.
Remember our choices:
> P(X | %0) = N(X | f(2:0),0%1)
> P(z| X;0:) = N(z | (X;02),5(X;62))
> P(z) =N(0,I)
(a) About term D[P(z|X;02)|P(z|X)]:
» P(z|X) is the actual distribution of z given X. We cannot

compute it;
> P(z|X;02) is the one we compute with networks p and X.

These two distributions are the same only once the networks
converged correctly, and then D[P (z|X;02)||P(z|X)] = 0.

18

Deriving the Optimization Problem
We have

log P(X) —D[P(z|X;02)[| P(2| X)]
= E. p(z| x;00)[l0g P(X|2;0)] = DIP(2|X;02)[| P(2)], (11)

with

> P(X|%0)=N(X|f(0),0)

> P(z| X;02) = N(z | un(X;02),5(X;62))

> P(z)=N(0,I)
(b) About term E. _p(| x;0,)[log P(X|2;0)]:

» P(X|z;0) can be computed easily given a z and an X;

P> Note the expectation is over a distribution predicted by p and
> - this will have an influence on the final algorithm.

19

Deriving the Optimization Problem

We have
log P(X) = D[P (2|X;02)|| P(2|X)]
=E..p(z| x;0,)[log P(X|2;0)] = D[P(2|X;02) || P(2)], (12)
with

> P(X|20)=N(X]|f(20),7)
> Pz] X;02) = N(z | u(X;02),5(X;02))
> P(z)=N(0,I)

(c) Term D[P(z|X;02)||P(z)] can be computed in closed form
(see [Doersch16] for exact formula).

20

Optimization Problem
We have:

log P(X) —D[P(2|X;02)| P(z|X)]
= E.op(z| x;00)[l0g P(X[2;0)] = DIP(2|X;02)[| P(2)] . (13)

We would like to look for © and ©5 simultaneously by optimizing:
gl,%gglogP(Xi), (14)

but we do not know how to compute D[P (z|X;02)||P(z]|X)] !

However, D[P (z|X;02)||P(z|X)] =0 for correct values of Os.
Variational Autoencoders ignore this term and hope that
maximizing the right hand side will make ©5 converge to good
values, which will make this term converge to 0. The
approximation made by ignoring this term will then become better
and better.

21

Final Optimization Problem

Variational Autoencoders look for © and ©5 simultaneously by
optimizing:

X.
g{%)z(- ﬁ(a@7@2)7

with

L(X;0,0:) =E._p(:x;0,) [log P(X|2,0)] = D[P(z| X; 02) | P(2)].

22

Computing the Gradients

f(2,0)

1(Xi; O2) " ¢
1

A2 —

L(X;0,02) = E.p(z|x;0,)[l0g P(X[2;0)] = D[P(z]X;02)|| P(2)] .

Possible algorithm:

» Draw 1 sample X from training data;
» Draw 1 z from N (u(X;02),%(X;02));
> G5 xIX = f(z0)%
Problem: E._p(.| x;0,)[log P(X|2;0©)] depends on ©3 but we

cannot compute its gradient wrt ©3! This is because the sampling
operation for z is not differentiable.

23

Computing the Gradients: The Reparametrization Trick

L(X;0,02) = E.p(zx;0,)[l0g P(X]2;0)] = D[P(z]X;02)|| P(2)] .

New algorithm with the reparameterization trick:

» Draw 1 sample X from training data;

» Reparameterisation trick: Draw 1 € from constant distribution
N(0,1);

> Take z = u(X;02) +2(X;02)¢;

We can now compute the gradients of £ wrt © and O for samples
X and z:
> P(X|20)=N(X|f(2;0),0%]) and its gradient can be
computed in closed form (note z depends on ©3);
» D[P(z|X;02)||P(z)] can be computed in closed form so its
gradient.

24

Generative Adversarial Networks

We would like to train a network G to generate images from some
domain from random vectors z:

Z
‘ Generator
G(z)
Gaussian

Aictrilitinn

25

Applications: Realistic Rendering

Karras19.

26

Applications: Domain Adaptation

Generator
G(z)

Input Synthetic Image z Output image, made to look

Useful for training on synthetic images.

Zhul?.

27

Applications: Style Transfer

Input

. AT
e TP
Hillsaa,

Zhul7.

28

Other Applications

> Efficient approximations of scientific models:
Mustafal9.
SHiP19.

» Generating new molecules:
Zhavoronkov19.

» Deep Fakes.

29

GANs: Original Formulation
Idea: Add a classification network (Discriminator D) jointly trained
with the Generator G to recognize if an input is a real sample from
the domain of interest or if it was created by the Generator.

When the Discriminator cannot distinguish the generated images
from the real ones, the Generator generates realistic images.

D(x) generated}
.

z
‘ Generator Discriminator o
G(z) D(G(z)) generated}

Gaussian

30

GANs: Original Formulation

mén max B pas () 108 D(X)] + Ey o, () [log(1 — D(G(2)))]

or

1
mlnmax ZlogD(x)—l—F Z log(1—D(G(z))),
‘T‘ xeT % 2~N(01)

with

» 7 is the set of real data;
» D(x)€[0,1], 0 <> synthetic, 1+ real.

Goodfellow14.

31

GANs: Original Formulation (2)

mlnmax ZlogD(x)—i—NL Z log(1—D(G(z))),
DT xeT % z~N(0;1)

with D(x) € [0,1], 0 <> synthetic, 1 <> real.

For a given Discriminator, we want:

min Y log(1- D(G(a))

Z z2~N(0;1)

and for a given Generator, we want:

maxTZlogD(x)—i—]\l] > log(1—D(G(z))).
| ‘XET % z~N(0;I)

32

Original Algorithm

for number of training iterations do
for k steps do

Sample minibatch of m noise samples {z(1),...,z(™)}
Sample minibatch of m real samples {x(1),... x(™)}
Update the discriminator D by stochastic gradient ascend.
end for
Sample minibatch of m noise samples {z(V), ... ,z(™}

Update the generator GG by stochastic gradient descend.
end for

33

Results

Original Formulation: Limitation

Mode collapse: A Generator providing always the same (realistic)
output whatever input z is an optimal (but not desirable) solution:

1
mlnmax ZlogD(x)—l—F Z log(1—D(G(z))).
‘T‘ xeT % 2~N(01)

35

Solution: Wasserstein GANSs

Reformulate the problem as:

The distribution of the generated data should be as close as
possible to the distribution of the real data.

Arjosky17.

36

Wasserstein GAN: Formalization
Denote:

» IP,.: the distribution of the real data;
> Py: the distribution of the generated data.

Mostly because Deep Networks are trained in a discriminative way.

“Adversarial” examples can be used for retraining to improve robustness

Optimization problem:

mein W (P,,Py),

where WW(.,.) is a distance between two distributions.

0 will be the parameters of the Generator.
37

A Suitable Distance
Earth Mover distance between two distributions (also called
Wasserstein metric).
The Wasserstein metric is the cost of optimal transport between
the two distributions:

min ||r[|2 subject to e(x +r) # ¢(x)
T

where
« xis an image and
« c()is the class predicted by an already trained network

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard. Deepfool:
A Simple and Accurate Method to Fool Deep Neural Networks. CVPR 2016

Formally:

w Pr,]P = inf E ~ -)
(BrBo)=__inf | Biayen (e —yl]

where v(.,y) =P, and y(z,.) = Py.

Wasserstein Metric: More Intuition

The Wasserstein metric is the cost of optimal transport between
the two distributions:

min ||r||2 subject to e(x +r) # ¢(x)
B

where
« xisanimage and
« () is the class predicted by an already trained network

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard. Deepfool:
A Simple and Accurate Method to Fool Deep Neural Networks. CVPR 2016.

Intuitive (but imperfect) view:

W(P,,Py) rnln Z [llz—yl],
:cy €y

where I' is the set of all possible sets of correspondences between x

and .

39

Important Property
If IPy is the distribution of the output of a deep network gy,
then the Wasserstein metric W (IP,.,IPy) is continuous in 6.

This is not the case for other distances and divergences between
distributions.

Will allow us to train gg.
Proof in Arjosky17.

Py is now the distribution of the network outputs gy(z) with
2z~ N(0;1).

40

How Can We Compute W (IP,.,IPy)?

Wasserstein GANs rely on the following expression
(Kantorovich-Rubinstein Duality):

WP, Pg) = sup (Epnp,[f(2)] = Eyr, [f(»)])
fstllfllo<t

where || f||L <1< ||f(x1) — f(x2)| < ||z1 — 2] i.e. f has to be
1-Lipschitz.

41

Kantorovich-Rubinstein Duality: Intuition (1)
When W (P,.,Py) is large, it is possible to find an f so that

sup (Egnp, [f(2)] = Ey~p, [f(y)])
fstlfllo<t

is large:

Other Adversarial Examples

min [|r]|2 subject to ¢(x +r) # ¢(x)
r

where
* xisanimage and
* ¢(.) is the class predicted by an already trained network.

e

Predicted class:
‘Indian elephant'

T X+r

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard. DeepFool:
A Simple and Accurate Method to Fool Deep Neural Networks. CVPR 2016.

42

Kantorovich-Rubinstein Duality: Intuition (2)
When W (PP,,Py) is small, it is not possible to find an f so that

sup (Egop, [f(2)] — Eyr, [f(1)])
fstlflle<t

is large under the constraint that f is Lipschitz:

43

So What?

WPy, Pg) = sup (Ezwp, [f(@)] = Eyury[f(y)])
fstlfllo<t

where ||fllL <1< | f(z1) — f(z2)]| < ||lx1 —x2| i.e. f has to be
1-Lipschitz.

Why is this useful?

44

Using the Kantorovich-Rubinstein Duality to Compute
W(IPT?]P@)

W(P,,Pg) = sup (Egup,[f(2)] = Eyr,[f(9)]) ,
fsel <t

where || f||z < 1.

If we have a parameterized family of functions f,,, where w are the
parameters and || fy|| <1 for any w, then we can estimate
W(P,,Py) using:

W(P,,Py) = max (Eznp, [fu(z)] = Eyor, [fu(y)])

= max <|%| S fol@) - 2 fw(ge(Z))>

€T 7 2N (0T)

45

Finally

Recall that we want:

mgin W(P,,Py).

We have:

W(P,,Py) max (’T Z Jw(x Z Juw(ge(z

z€T ZNN(O 1)

Idea: Implement f,, with a deep network:

Inain mgx(,,r wa Z Jw(ge(z

Z 2N (051)

(we will need to constrain f,, to be 1-Lipschitz)

) |

) |

46

Comparison with the Original Formulation

Original GANs:

ménmax (]7'] Z log D(x N Z log(1—D(G(z)))

xeT % z~N(0;I)

Woasserstein GANSs:

mgn max (’7, wa F Z fw(ga(z))> :

x€T Z 2~ N(0;T)

D is a classifier but f,, is not. It is usually called the critic.

47

Wassertein GAN Algorithm

for number of training iterations do
for k steps do
Sample minibatch of m samples {z(1), ... 2(™)}
Sample minibatch of m samples {z(1) ... 2™}
Update parameters w for the critic f,, by stochastic
gradient ascend.
w < clip(w, —¢,+c) # fy, should be Lipschitz
end for
Sample minibatch of m samples {z(1), ... (™)1
Update parameters 6 for the generator gy by stochastic
gradient descend.
end for

48

Forcing f,, to be 1-Lipschitz

Original solution: w < clip(w, —c,+c)

Better solution: Add a term that constrains the gradient of f,, wrt
x.

nbm max<|7-| > fw(z) —NL > fuw(ge(2))

z€T 2N (051)

A SVl)HQ—l)?)

Gulrajanil?.

49

Image Generators

Latent z € Z

UpSampling

50

Progressive GANs

G Latent Latent
s
|—£’.’.‘4_.] 4x4

:Reals l :Reals

Karras18.

1024x1024

aee é .
| Reals

1024x1024
e

Training progresses ————————————>»

51

Progressive GANs: Results

Generated
Image

Nearest
Neighbor in
the training
set

52

CycleGAN

How can we make sure we preserve the content of an input image?

Input

53

CycleGAN

Zhul7.

Monet 7_ Photos

summer —» winter

54

CycleGAN

G(x)

F(G(X))

X Y

reconstruction |,,.. >
orror . \._ |

X

IF(G600) =,

Zhul?.

IG(F) - ¥l

i G(F(x))

Deep Learning applied to Computer Vision problems

» Object Detection;

» Image Segmentation;

» Articulated Object Detection;
> etc.

How can we formalize these problems into Deep Learning
problems?

56

Object Detection and Localization: How?

57

R-CNN (1)

Input Image Region Proposals
No learning (vet)

R.B. Girshick et al. “Rich Feature Hierarchies for Accurate Object
Detection and Semantic Segmentation”. In: Conference on
Computer Vision and Pattern Recognition. 2014, pp. 580-587.

58

R-CNN (2)

rescaled
image region

0.01 Airplane

0.00 Bicycle

59

R-CNN (3)

Problem: In practice, many region proposals. R-CNN inefficient
since image locations are processed many times.

60

Fast R-CNN

Convolutions are applied only once to the image to extract image
features: Much faster.

Feature
Extraction
| Network

Feature Maps

Ross B. Girshick. “Fast R-CNN". In: International Conference on
Computer Vision. 2015.

61

Fast R-CNN (2)

Outputs: bb X
softmax regressor

Feature Maps

62

Fast R-CNN: Loss Function (1)

Quuts w“
softmax regressor

|;}..:FC T’ FC

Feature Maps

Loss function for 1 region:

L(@) = - logpc(fcl (X§ @)) + >‘1[c21]['bbox ; (15)
where:

» x is the rescaled region in the feature maps;

> cis the true class for x. ¢ =0 corresponds to the background.

» Libox is a loss term to refine the region bounding box (see
next slide);

>)\ is a weight.

63

Fast R-CNN: Loss Function (2)

Lpbox is a loss term to refine the region bounding box:
Lobox = (w1 + fopox (%;0)[0] = ") + (v1 + fopox (x;©) [1] —vf") 2 +..

where (ug,v1) X (u2,v2) are the coordinates of the region bounding
box, and (u*,v9") x (u3',vJ") are the coordinates of the region
bounding box.

64

Faster R-CNN

Learns to predict the region proposals:

Region
Proposal
Network

t?

Feature
5| Extraction
Network

Feature Maps

Challenges: the number of regions varies with the image, each
region has a different size.
S. Ren et al. “Faster R-CNN: Towards Real-Time Object Detection

with Region Proposal Networks”. In: Advances in Neural

Information Processino Svestems 2015 65

Faster R-CNN: Region Proposal Network

For each 2D location in the feature maps: consider 3 “anchor
boxes” and predict for each anchor box:

» If the anchor box overlaps with an object;
» An offset to adapt the anchor box.

=

Feature Maos

Loss function for 1 image x with B = {B;}; ground truth bounding
boxes:

L(O2) ==Y logpe(ap) (9(x;02)[A]) + Ac(A,B) Lopox, (16)
AcA

with ¢(A,B) =1 if Anchor box A overlaps with at least one
bounding box B; in B, 0 otherwise.

66

Mask-RCNN

Kaiming He et al. "Mask R-CNN". In: International Conference on
Computer Vision. 2017.

67

Mask-RCNN (2)

In addition to predicting the class and the “delta bounding box",
predict a binary mask for each possible class.

Fuster R-CNN

w1 ResNez [10]
> class
> 20487

— bmx

ol || %1024 7 |
A V.
/’/ 7
For each region x4 14x14
.\.!I 7 xase | || xe0
4 /

additional *head” || .~

Loss function for one region:
[’(@) = logpc(fcl (X; @)) + /\1[021} (['bbox +)\Z['mask) 5 (17)
where:

P cis the true class for x. ¢ =0 corresponds to the background.
» Lmask is a loss term to refine the region bounding box:

»Cmask = Hfmask(x;@)[c] _mH2

» m is the ground truth mask for the region.

68

Mask-RCNN: Extensions

Faster R-CNN
w/ ResNet [19]

7%7 [77 | aves i—' Gass

%1024 733 |[x2048 204810 fon
/"/l ’/
3D pose

For each region

—»
Rol

3D model
embedding

Alexander Grabner, Peter M. Roth, and Vincent Lepetit. “3D Pose
Estimation and 3D Model Retrieval for Objects in the Wild". In:
CVPR. 2018.

69

Deep Learning applied to Computer Vision problems

» Object Detection;

» Image Segmentation;

» Articulated Object Detection;
> etc.

70

Image Segmentation

Typically relies on Encoder-Decoder architecture (also called
Hour-Glass network):

Input Convolutional Encoder-Decoder Output
ﬂ .'] "dm' "i f .
RGB Image I Conv + Batch Normalisation + RelU Segmentation
I Pooling M Upsampling Softmax

V. Badrinarayanan, A. Kendall, and R. Cipolla. “Segnet: A Deep
Convolutional Encoder-Decoder Architecture for Image
Segmentation”. In: |[EEE Transactions on Pattern Analysis and
Machine Intelligence (2015).

71

Image Segmentation with U-Net

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-Net:

Convolutional Networks for Biomedical Image Segmentation”. In:

MICCAI. 2015.

72

Image Segmentation with U-Net

73

Image Segmentation with U-Net

UpSampling

74

Image Segmentation with U-Net

75

Image Segmentation with U-Net

v L vuy)

h3s = f35 * hay

Loss function:

‘C(@) = Z Z - logpcl(x,l) (f(X; @)[l])
x 1

(18)

76

Deep Learning applied to Computer Vision problems

» Object Detection;

» Image Segmentation;

» Articulated Object Detection;
> etc.

7

Articulated Pose Prediction

Z. Cao et al. “Realtime Multi-Person 2D Pose Estimation Using
Part Affinity Fields”. In: Conference on Computer Vision and
Pattern Recognition. 2017.

How can we formalize this problem?

78

Predicting Heat Maps

Right Ankle

79

Convolutional Pose Machines

Hourglass Hourglass
Network 1 Network 2

Shih-En Wei et al. “Convolutional Pose Machines”. In: Conference
on Computer Vision and Pattern Recognition. 2016.

80

Multiple Articulated Objects

81

Multiple Articulated Objects

Z. Cao et al. “Realtime Multi-Person 2D Pose Estimation Using
Part Affinity Fields”. In: Conference on Computer Vision and
Pattern Recognition. 2017.

82

To Go Further

Articulated Object Detection;

Spatial Transformers;

>
>
» Dealing with Unstructured Input;
» Self-Learning;

>

Differentiable Pipelines and End-to-End Learning.

83

Spatial Transformers

Computes and applies a spatial transformation on an image, from
the image itself.

m transform ? transform

Differentiable Module

{) Parameters of the geometric
transformations

i Localisation Net

—-p

Spatial Transformer

85

Example: Affine transformation

(r;l) TG =he |y | = [011 012 013] yt
? 1 21 b2 Oa 1

TalG)

Grid
Generator ;

Spatial Transformer

Example: Affine transformation

s n b bis
=Ta(G)=he | 3¢ | = Y
(yf) o(G) 9(";) [021 (2 923]({’)

Ta(G) xt

t

g i
i

.7n)

i Localisation Net Grid
"""""""""""""" \‘ Gene

Spatial Transformer

Vi€ [1.HW]Ve € [1..C]
where k is a kernel.

Z Z nxm - m)k(yzs B n)

n=1m=1

Bilinear sampling kernel:

Vie [1.HW]Vc € [1..C]

= ly; —nl)

Z Z n><mInaX ‘-T —m|)max(
n=1m=1
VE h
c Z Z max(0,1 — |z} — m|)max(0,1 — |y; — n|)
al‘]’nx’m =1 m—=1

n=

avc ul
=

1

w
ZU mmax(0,1 — |y7 —nl) x
m=1

0 iflm—zf|>1
1 ifm>a?

S

-1 ifm < x}

Spatial Transformer Network

Spatial Transformers are differentiable, and so can be inserted at any point in a
feed forward network and trained by back propogration

I

Example: digit classification, loss: cross-entropy for 10 way classification

,l(0
CNN
CNN
., ST
9

86

Rotated MNIST
ST-FCN Affine ST-FCN Thin Plate Spline

Input Output Input ST Output

B-E-B I
-2

-G-8
B-C-f-
NSNS 7

-t‘l
-":‘“"ﬂ

--P

Fine Grained Visual Categorization
CUB-200-2011 birds dataset: 200 species of birds

87

Fine Grained Visual Categorization (2)

End-to-end learning: all the modules (f,.., Inception classifiers
are trained together)

88

To Go Further

Articulated Object Detection;

Spatial Transformers;

>
>
» Dealing with Unstructured Input;
» Self-Learning;

>

Differentiable Pipelines and End-to-End Learning.

89

Dealing with Orderless Input

C.R. Qi et al. “PointNet: Deep Learning on Point Sets for 3D
Classification and Segmentation”. |n: Conference on Computer

Vision and Pattern Recognition. 2017.
90

End-to-end learning for scattered, unordered point data

Unified framework for various tasks

Object Classification
» PointNet » Object Part Segmentation

Semantic Scene Parsing

l PointNet
. L

,;f mug? @ X 1
L ble? l

Classification Part Segmentation ~ Semantic Segmentation

Challenges

» Unordered point set as input: Model needs to be invariant to
N! permutations;

» Also, model needs to be invariant under geometric
transformations.

Permutation invariance:

f(lEl,.%'Q,...,.%’n) = f($0(1)7x0(2)>"'1$0(n)) : (19)

Examples:
f(z1,za,...,2,) = max{xy,x2,...,2n} (20)
f(x1,22,...,00) =21+ 22+ .+ 2y (21)

How can we construct a family of symmetric functions with neural
networks?

91

f(z1,ma,...,2n) =vy(g(h(z1),h(x2),...,h(zy))) (22)

is symmetric if g is symmetric.

h
(1,2,3) — simple symmetric function
111 — \ ¢/

(2,32) — >." —’I

(2,34) —

Use neural networks for h, 7, and max-pooling for g.

92

Invariance to Geometric Transformation

transform 3
params: 3x3

Transformed

Data Data

93

Full Network

Classification Network

: input mip (64.64) feature mlp (64,128,1024)

; £ transform b ‘ transform

i 3

= Z shared nx1024
b I

nx3
5
a
Q.
il nx64

n. number of points;
k: number of possible objects;
m: number of possible segments.

y’ mug?

LY, table?

car?
max mip
pool 1oy (512,256,k)

C——1
global'fea(ure

k

Sl output scores

Application to Outlier Detection

(a) RANSAC (b) Our approach

K. M. Yi et al. “Learning to Find Good Correspondences”. In:
Conference on Computer Vision and Pattern Recognition. 2018.

94

To Go

Further

Articulated Object Detection;
Spatial Transformers;

Dealing with Unstructured Input;
Self-Learning;

Differentiable Pipelines and End-to-End Learning.

95

Self-Learning for Deep Monocular Depth Estimation

C. Godard, O. Mac Aodha, and G.J. Brostow. “Unsupervised
Monocular Depth Estimation with Left-Right Consistency”. In:
Conference on Computer Vision and Pattern Recognition. 2017.

96

Supervised Depth Prediction

Loss

Input CNN Output Target
depth depth

97

Unsupervised Depth Prediction

Loss

Input CNN Output Sampl_e%\e\ Output Target
colors disparity D-\ﬁe‘e““a color color

98

To Go

Further

Articulated Object Detection;
Spatial Transformers;

Dealing with Unstructured Input;
Self-Learning;

Differentiable Pipelines and End-to-End Learning.

99

Differentiable, End-to-End Computer Vision Pipelines

We can even train complex pipelines made of multiple networks so
that the networks work well together.

For that, we need to formalize the problem with a single loss
function that is differentiable. The networks are then trained
jointly, “end-to-end” from the input to the final output.

Example:
K. M. Yi et al. “LIFT: Learned Invariant Feature Transform”. In:
European Conference on Computer Vision. 2016.

SCORE MAP

\
= -)-fil-em-

4

8-)-O-

.
.

description
vector

“Differentiable glue”

The detector .. QEETETTNTINN -----------

SCORE MAP

\|

]

. . : -

-a=n-Q-E

- { []

]

"

- ; 5)

‘* . oy 1 description

-)-@- oeec |- (D)

’

” 4

How the Detector is Used at
*E" Run-Time

non-maxima —

suppression

input image 'score map' feature points

-| per |=| Cost Function (1)

Patches P where we
want to detect a
feature point

Py=+1

All the other patches

DET(P)
P7 Yy = —1

Lelass(P) = max(0,1 — y max(DET(P)))?,y € {1, +1}

-| Cost Function (1)

Patches P where we
want to detect a
feature point

M |
=)
]

DET(P)

Pay:_l

All the other patches

Lelass(P) = max(0, 1 — y softmax(DET(P)))?,y € {—1,+1}

Training with SfM Keypoints

Piccadilly (pic) Roman Forum (f)

¢ We need variability (illumination, perspective, etc). We build StM
reconstructions from photo-tourism sets.

e We keep only points with SfM correspondences as positive examples,
that is, we learn to find repeatable points.

-bl DET

-

Cost Function (2)

-)l DET

Cost Function (2)

= argmax(DET(P
| pl

DET(P!)

maX DETi i \)

DET(P?)

-.l per |- Cost Function (2)

—— max(DET(P
o e Pl

DET(P!)

igmax DETi i \)

DET(P?)
PY))))
P?)))) [§

Loair(P1,P2) = || DESC(Crop(P!, argmax(DET(
DESC(Crop(P?, argmax(DET(

~| per |- Cost Function (2)

_ softargmax(DET(P!))

= : Pl
: Y softargmax(DET (P2
Loair(P1,P?) = DESC(Crop(P!, softargmax(DET(P')))) —
DESC(Crop(P?, softargmax(DET (P?)))) 1|2
_ 2 XD(AS(x))x

softargmax(S) > €xp(BS(x))

SCORE MAP

-0

ORI

description
DEsc '

SCORE MAP

: |
(-)-fl-e- -
T,

]
L}
L}
'
'
'
L}
L}
L}
L}
! description
B

Learning Orientations
"" Implicitly

We want the orientation estimator to provide consistent
results, regardless of imaging changes

Learning Orientations
"" Implicitly

We want the orientation estimator to provide consistent
results, regardless of imaging changes

._.
\
._.

Learning Orientations Implicitly:
"_' Siamese Network

p! -

P2

Learning Orientations Implicitly:
‘_' Siamese Network

Lpair(P1,P?) = || DESC(Rot (P!, angle(P?))) -
DESC(Rot(P?, angle(P?))) |2

Rot(f’l, angle(f’l))

BB
<

DESC |=——>

| ORI —*.—>DEsc—> :
P2 .

Rot P2 ,angle(P2

Learning Orientations Implicitly:
‘_' Siamese Network

Loair(PY,P2) = | DESC(Rot(P!, angle(P'))) —
DESC(Rot(P?, angle(P?))) |2

with angle(lg) = arctanQ(ORI(l/S)[l], OR'(IA))[Q])

. —>| ORI —».’L> DESC |—»

Pl _:_

(o)~ I
P2

.... | earned Orientations

Our Learned Orientations_

SCORE MAP

| ,
—=)- - e=n-Q-
2
| |

description
. vector

SCORE MAP

..- Learning the Descriptor

* Positive pairs: Pl .P2

—_

L,0s(PL,P2) = | DESC(P!) — DESC(P2)|?

..- Learning the Descriptor

Posmve palrs ‘Pl P2

Lpos(Pl P2) = ||DESC(P1 — DESC(P2)||?

Negatlve pa|rs .y
Lues(P1, P?) = max(0,1 — | DESC(P1) — DESC(P?)|?)

e i ‘

Hard example mining |s very important for training

- N

.'l . < ‘
f)\g

A Single, Global Cost Function

i 1 — y sof DET(P)))?
{DET,glR}ﬁlDESC} {(PZ)} maX<O, Y SO tmax(())) +
7y

Z [DESC (G(P*, softargmax(DET(P"))) — DESC (G(P?, softargmax(DET(P?))) ||> +
(P1,P2)

>~ max(0,1— ||DESC (G(P", softargmax(DET(P'))) — DESC (G(P?, softargmax(DET(P?))))[|*)
(P1,P3)

G(P7 X) = Rot (Pa X, a*ngleORl (Crop(P, X)))

