Deep Learning and Computer Vision

Vincent Lepetit

September 14, 2021

Today

"Deep" Embeddings:

- Embeddings and autoencoders;
- Image Embeddings;
- Embeddings and Siamese Networks;
- Variational Autoencoders;

Deep Learning applied to Computer Vision problems:

- Object Detection;
- Image Segmentation;

To Go Further

- Articulated Object Detection;
- Dealing with Unstructured Input;
- Spatial Transformers;
- Self-Learning;
- Differentiable Pipelines and End-to-End Learning.

"Deep" Embeddings

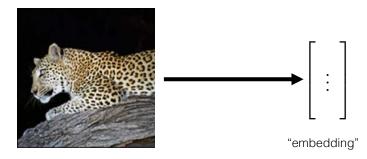
- Embeddings and autoencoders;
- ► Embeddings and features;
- ► Embeddings and Siamese Networks;
- Variational Autoencoders;

Beyond Supervised Learning

We can use a Deep Network to approximate any continuous function;

- We can use any loss function as long as it is differentiable;
- → very flexible!

"Embedding" Concept



compact representation of the image, can be used to compare images, for example.

How can we compute a good embedding for a given image?

Autoencoders

Loss function:

$$\mathcal{L}(\Theta_1, \Theta_2) = \sum_{\mathbf{x}} \|g(f(\mathbf{x}; \Theta_1); \Theta_2) - \mathbf{x}\|^2.$$
 (1)

Dimensionality reduction and reconstruction:

$$code \leftarrow f(\mathbf{x}; \Theta_1) \mathbf{x}' \leftarrow g(code; \Theta_2)$$
 (2)

Does not work well in practice without additional constraints.

Y. Bengio. "Learning Deep Architectures for Al". In: Foundations and Trends in Machine Learning (2009).

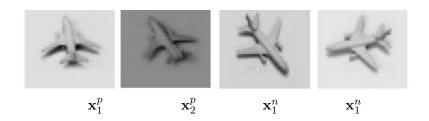
5

Siamese Networks, Embeddings, and Metric Learning

How can we train f so that the distance $||f(O_1;\Theta) - f(O_2;\Theta)||$ is representative of the similarity between O_1 and O_2 ?

I. Bromley, I. Guyon, and Y. LeCun. "Signature Verification using a Siamese Time Delay Neural Network". In: *Advances in Neural Information Processing Systems*. 1994.

Positive and Negative Pairs

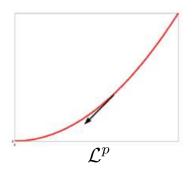


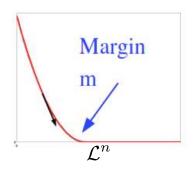
Make

- $\blacktriangleright \ \mathcal{L}^p(\mathbf{x}_1^p,\mathbf{x}_2^p;\Theta) = \|f(\mathbf{x}_1^p;\Theta) f(\mathbf{x}_2^p;\Theta)\| \text{ small, and }$
- $\blacktriangleright \ \mathcal{L}^n(\mathbf{x}_1^n,\mathbf{x}_2^n;\Theta) = \|f(\mathbf{x}_1^n;\Theta) f(\mathbf{x}_2^n;\Theta)\| \ \text{large}.$

7

Contrastive Loss





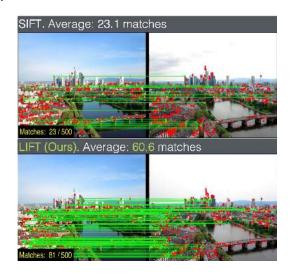
$$\mathcal{L}^p(\mathbf{x}_1^p, \mathbf{x}_2^p; \Theta) = \frac{1}{2} \| f(\mathbf{x}_1^p; \Theta) - f(\mathbf{x}_2^p; \Theta) \|^2$$

Need hard-example mining to avoid flat gradients.

See also triplet loss.

3

Application



K. M. Yi et al. "LIFT: Learned Invariant Feature Transform". In: *European Conference on Computer Vision*. 2016.

"Deep" Embeddings

- Embeddings and autoencoders;
- ► Embeddings and features;
- ► Embeddings and Siamese Networks;
- Variational Autoencoders.

Variational Autoencoders (VAE)

Very different from autoencoders! Only resemble them during training.

Given a training set X_i , we want to generate new samples X that follow the same distribution as the X_i 's. (See also Generative Adversarial Networks)

(training set: fishing images)

References

Original paper:

Diederik P. Kingma and Max Welling. "Auto-encoding variational Bayes". In: *International Conference for Learning Representations*. 2014.

A good tutorial:

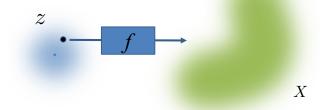
Carl Doersch. "Tutorial on Variational Autoencoders". In: arXiv Preprint. 2016.

The original paper is very general, we will focus here on some specific but common choices.

Variational Autoencoders (VAE)

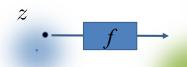
Given a set X_i , we want to generate new samples X that follow the same distribution as the X_i 's.

We will do this by training a network $f(w; \Theta)$ such that, given a latent variable $z \sim P(z)$ (usually $z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$), $f(z; \Theta) \sim P(X)$.



Diederik P. Kingma and Max Welling. "Auto-encoding variational Bayes". In: *International Conference for Learning Representations*. 2014.

Looking for Θ



X

We have:

$$P(X) = \int_{z} P(X \mid z; \Theta) P(z) dz.$$
 (3)

We want to find the parameters Θ of network $f(z;\Theta)$.

This is done by optimizing:

$$\arg\max_{\Theta} \sum_{i} \log P(X_i). \tag{4}$$

How can we compute $P(X_i)$?

Looking for Θ

We have:

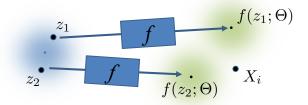
$$P(X) = \int_{z} P(X \mid z; \Theta) P(z) dz.$$
 (5)

One way to estimate $P(X_i)$ is to sample many z_i , and take

$$P(X_i) \approx \frac{1}{N} \sum_{j} P(X \mid z_j; \Theta)$$
 (6)

Usually, $P(X \mid z; \Theta)$ is taken to follow a Gaussian distribution:

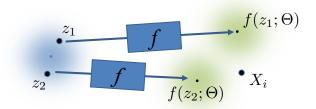
$$P(X \mid z; \Theta) = \mathcal{N}(X \mid f(z; \Theta), \sigma^{2} \mathbf{I}). \tag{7}$$



Looking for Θ

One way to estimate $P(X_i)$ is to sample many z_i , and take

$$P(X_i) \approx \frac{1}{N} \sum_{j} P(X \mid z_j; \Theta)$$
 (8)



Unfortunately, in large dimensions, for most z, $P(X \mid z; \Theta) \approx 0$, especially when Θ is initialized randomly.

Key idea in Variational Autoencoders: Sample values of z that are likely to have produced X.

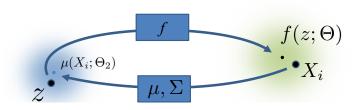
z given an X

Key idea in Variational Autoencoders: Sample values of z that are likely to have produced X.

We consider:

$$P(z \mid X; \Theta_2) = \mathcal{N}(z \mid \mu(X; \Theta_2), \Sigma(X; \Theta_2)), \tag{9}$$

where μ and Σ are implemented as neural networks. Σ predicts a diagonal matrix.



Deriving the Optimization Problem

After some derivations (see [Doersch16]):

$$\begin{split} & \log P(X) - \mathcal{D}[P(z|X;\Theta_2) \| P(z|X)] \\ = & E_{z \sim P(z \mid X;\Theta_2)} [\log P(X|z;\Theta)] - \mathcal{D}[P(z|X;\Theta_2) \| P(z)] \,, \end{split} \tag{10}$$

where \mathcal{D} is the Kullback-Liebler divergence.

Remember our choices:

- $P(X \mid z; \Theta) = \mathcal{N}(X \mid f(z; \Theta), \sigma^2 \mathbf{I})$
- $P(z \mid X; \Theta_2) = \mathcal{N}(z \mid \mu(X; \Theta_2), \Sigma(X; \Theta_2))$
- $P(z) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
- (a) About term $\mathcal{D}[P(z|X;\Theta_2)||P(z|X)]$:
 - ▶ P(z|X) is the actual distribution of z given X. We cannot compute it;
 - ▶ $P(z|X;\Theta_2)$ is the one we compute with networks μ and Σ .

These two distributions are the same only once the networks converged correctly, and then $\mathcal{D}[P(z|X;\Theta_2)||P(z|X)] = 0$.

Deriving the Optimization Problem

We have

$$\log P(X) - \mathcal{D}[P(z|X;\Theta_2) || P(z|X)]$$

$$= E_{z \sim P(z|X;\Theta_2)} [\log P(X|z;\Theta)] - \mathcal{D}[P(z|X;\Theta_2) || P(z)], \quad (11)$$

with

- $P(X \mid z; \Theta) = \mathcal{N}(X \mid f(z; \Theta), \sigma^2 \mathbf{I})$
- $P(z \mid X; \Theta_2) = \mathcal{N}(z \mid \mu(X; \Theta_2), \Sigma(X; \Theta_2))$
- $P(z) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
- (b) About term $E_{z \sim P(z \mid X; \Theta_2)}[\log P(X \mid z; \Theta)]$:
 - $ightharpoonup P(X|z;\Theta)$ can be computed easily given a z and an X;
 - Note the expectation is over a distribution predicted by μ and Σ this will have an influence on the final algorithm.

Deriving the Optimization Problem

We have

$$\log P(X) - \mathcal{D}[P(z|X;\Theta_2) || P(z|X)]$$

$$= E_{z \sim P(z|X;\Theta_2)} [\log P(X|z;\Theta)] - \mathcal{D}[P(z|X;\Theta_2) || P(z)], \quad (12)$$

with

- $P(X \mid z; \Theta) = \mathcal{N}(X \mid f(z; \Theta), \sigma^2 \mathbf{I})$
- $P(z \mid X; \Theta_2) = \mathcal{N}(z \mid \mu(X; \Theta_2), \Sigma(X; \Theta_2))$
- $P(z) = \mathcal{N}(\mathbf{0}, \mathbf{I})$
- (c) Term $\mathcal{D}[P(z|X;\Theta_2)\|P(z)]$ can be computed in closed form (see [Doersch16] for exact formula).

Optimization Problem

We have:

$$\begin{split} & \log P(X) - \mathcal{D}[P(z|X;\Theta_2) \| P(z|X)] \\ = & E_{z \sim P(z \mid X;\Theta_2)} [\log P(X|z;\Theta)] - \mathcal{D}[P(z|X;\Theta_2) \| P(z)] \,. \end{split} \tag{13}$$

We would like to look for Θ and Θ_2 simultaneously by optimizing:

$$\max_{\Theta,\Theta_2} \sum_i \log P(X_i), \tag{14}$$

but we do not know how to compute $\mathcal{D}[P(z|X;\Theta_2)\|P(z|X)]$!

However, $\mathcal{D}[P(z|X;\Theta_2)\|P(z|X)]=0$ for correct values of Θ_2 . Variational Autoencoders ignore this term and hope that maximizing the right hand side will make Θ_2 converge to good values, which will make this term converge to 0. The approximation made by ignoring this term will then become better and better.

Final Optimization Problem

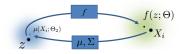
Variational Autoencoders look for Θ and Θ_2 simultaneously by optimizing:

$$\max_{\Theta,\Theta_2} \sum_{i} \mathcal{L}(X;\Theta,\Theta_2),$$

with

$$\mathcal{L}(X;\Theta,\Theta_2) = E_{z \sim P(z|X;\Theta_2)}[\log P(X|z;\Theta)] - \mathcal{D}[P(z|X;\Theta_2)||P(z)].$$

Computing the Gradients



$$\mathcal{L}(X;\Theta,\Theta_2) = E_{z \sim P(z|X;\Theta_2)}[\log P(X|z;\Theta)] - \mathcal{D}[P(z|X;\Theta_2)||P(z)].$$

Possible algorithm:

- Draw 1 sample X from training data;
- ▶ Draw 1 z from $\mathcal{N}(\mu(X;\Theta_2), \Sigma(X;\Theta_2))$;
- $ightharpoonup \frac{\partial \mathcal{L}}{\partial \Theta} \propto \|X f(z;\Theta)\|^2;$

Problem: $E_{z\sim P(z\mid X;\Theta_2)}[\log P(X|z;\Theta)]$ depends on Θ_2 but we cannot compute its gradient wrt Θ_2 ! This is because the sampling operation for z is not differentiable.

Computing the Gradients: The Reparametrization Trick

$$\mathcal{L}(X;\Theta,\Theta_2) = E_{z \sim P(z|X;\Theta_2)}[\log P(X|z;\Theta)] - \mathcal{D}[P(z|X;\Theta_2)||P(z)].$$

New algorithm with the reparameterization trick:

- Draw 1 sample X from training data;
- ▶ Reparameterisation trick: Draw 1 ϵ from constant distribution $\mathcal{N}(0,\mathbf{I})$;
- ► Take $z = \mu(X; \Theta_2) + \Sigma(X; \Theta_2)\epsilon$;

We can now compute the gradients of \mathcal{L} wrt Θ and Θ_2 for samples X and z:

- ▶ $P(X|z;\Theta) = \mathcal{N}(X \mid f(z;\Theta), \sigma^2 \mathbf{I})$ and its gradient can be computed in closed form (note z depends on Θ_2);
- ▶ $\mathcal{D}[P(z|X;\Theta_2)||P(z)]$ can be computed in closed form so its gradient.

Generative Adversarial Networks

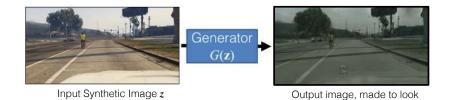
We would like to train a network G to generate images from some domain from random vectors \mathbf{z} :

Gaussian

Applications: Realistic Rendering

Karras19.

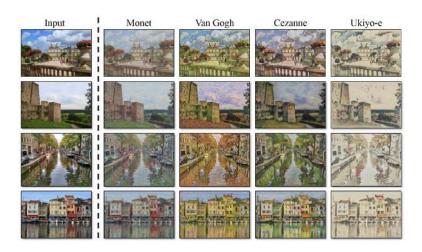
Applications: Domain Adaptation



Useful for training on synthetic images.

Zhu17.

Applications: Style Transfer



Zhu17.

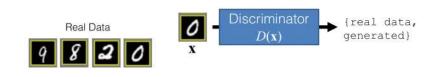
Other Applications

- Efficient approximations of scientific models: Mustafa19.
 SHiP19.
- ► Generating new molecules: **Zhavoronkov19**.
- ▶ Deep Fakes.

GANs: Original Formulation

Idea: Add a classification network (Discriminator D) jointly trained with the Generator G to recognize if an input is a real sample from the domain of interest or if it was created by the Generator.

When the Discriminator cannot distinguish the generated images from the real ones, the Generator generates realistic images.



GANs: Original Formulation

$$\min_{G} \max_{D} \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x})}[\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_{\mathbf{z}}(\mathbf{z})}[\log (1 - D(G(\mathbf{z})))]$$

or

$$\min_{G} \max_{D} \frac{1}{|\mathcal{T}|} \sum_{\mathbf{x} \in \mathcal{T}} \log D(\mathbf{x}) + \frac{1}{N_{\mathbf{z}}} \sum_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} \log(1 - D(G(\mathbf{z}))),$$

with

- T is the set of real data;
- ▶ $D(\mathbf{x}) \in [0,1]$, $0 \leftrightarrow \text{synthetic}$, $1 \leftrightarrow \text{real}$.

Goodfellow14.

GANs: Original Formulation (2)

$$\min_{G} \max_{D} \frac{1}{|\mathcal{T}|} \sum_{\mathbf{x} \in \mathcal{T}} \log D(\mathbf{x}) + \frac{1}{N_{\mathbf{z}}} \sum_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} \log (1 - D(G(\mathbf{z}))) \,,$$

with $D(\mathbf{x}) \in [0,1]$, $0 \leftrightarrow \text{synthetic}$, $1 \leftrightarrow \text{real}$.

For a given Discriminator, we want:

$$\min_{G} \frac{1}{N_{\mathbf{z}}} \sum_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} \log(1 - D(G(\mathbf{z}))),$$

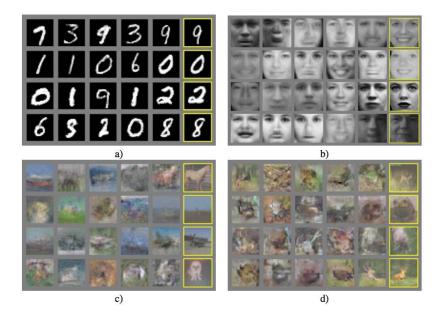
and for a given Generator, we want:

$$\max_{D} \frac{1}{|\mathcal{T}|} \sum_{\mathbf{x} \in \mathcal{T}} \log D(\mathbf{x}) + \frac{1}{N_{\mathbf{z}}} \sum_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} \log (1 - D(G(\mathbf{z}))).$$

Original Algorithm

```
\begin{tabular}{ll} \textbf{for } number of training iterations \begin{tabular}{ll} \textbf{do} \\ \textbf{for } k \mbox{ steps } \textbf{do} \\ & \mbox{Sample minibatch of } m \mbox{ noise samples } \{\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(m)}\} \\ & \mbox{Sample minibatch of } m \mbox{ real samples } \{\mathbf{x}^{(1)},\ldots,\mathbf{x}^{(m)}\} \\ & \mbox{Update the discriminator } D \mbox{ by stochastic gradient ascend.} \\ & \mbox{end for} \\ & \mbox{Sample minibatch of } m \mbox{ noise samples } \{\mathbf{z}^{(1)},\ldots,\mathbf{z}^{(m)}\} \\ & \mbox{Update the generator } G \mbox{ by stochastic gradient descend.} \\ & \mbox{end for} \\ \end{tabular}
```

Results



Original Formulation: Limitation

Mode collapse: A Generator providing always the same (realistic) output whatever input **z** is an optimal (but not desirable) solution:

$$\min_{G} \max_{D} \frac{1}{|\mathcal{T}|} \sum_{\mathbf{x} \in \mathcal{T}} \log D(\mathbf{x}) + \frac{1}{N_{\mathbf{z}}} \sum_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} \log (1 - D(G(\mathbf{z}))) \,.$$

Solution: Wasserstein GANs

Reformulate the problem as:

The distribution of the generated data should be as close as possible to the distribution of the real data.

Arjosky17.

Wasserstein GAN: Formalization

Denote:

- $ightharpoonup \mathbb{P}_r$: the distribution of the real data;
- $ightharpoonup \mathbb{P}_{\theta}$: the distribution of the generated data.



Mostly because Deep Networks are trained in a discriminative way.

Optimization problem:

$$\min_{\theta} W(\mathbb{P}_r, \mathbb{P}_{\theta}),$$

where W(.,.) is a distance between two distributions. θ will be the parameters of the Generator.

[&]quot;Adversarial" examples can be used for retraining to improve robustness.

A Suitable Distance

Earth Mover distance between two distributions (also called Wasserstein metric).

The Wasserstein metric is the cost of optimal transport between the two distributions:

$$\min \|\mathbf{r}\|_2$$
 subject to $c(\mathbf{x} + \mathbf{r}) \neq c(\mathbf{x})$

where

- x is an image and
- c(.) is the class predicted by an already trained network.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. CVPR 2016.

Formally:

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \inf_{\gamma \in \pi(\mathbb{P}_r, \mathbb{P}_{\theta})} \mathbb{E}_{(x, y) \sim \gamma}[\|x - y\|],$$

where
$$\gamma(.,y) = \mathbb{P}_r$$
 and $\gamma(x,.) = \mathbb{P}_{\theta}$.

Wasserstein Metric: More Intuition

The Wasserstein metric is the cost of optimal transport between the two distributions:

$$\min_{\mathbf{r}} \|\mathbf{r}\|_2$$
 subject to $c(\mathbf{x} + \mathbf{r}) \neq c(\mathbf{x})$

where

- x is an image and
- c(.) is the class predicted by an already trained network.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard. DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. CVPR 2016.

Intuitive (but imperfect) view:

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \min_{\gamma \in \Gamma} \sum_{(x,y) \in \gamma} [\|x - y\|],$$

where Γ is the set of all possible sets of correspondences between x and y.

Important Property

If \mathbb{P}_{θ} is the distribution of the output of a deep network g_{θ} , then the Wasserstein metric $W(\mathbb{P}_r, \mathbb{P}_{\theta})$ is continuous in θ .

This is not the case for other distances and divergences between distributions.

Will allow us to train g_{θ} .

Proof in Arjosky17.

 \mathbb{P}_{θ} is now the distribution of the network outputs $g_{\theta}(z)$ with $z \sim \mathcal{N}(\mathbf{0}; \mathbf{I})$.

 $\min \| \mathbf{r} \|_2 \text{ subject to } c(\mathbf{x} + \mathbf{r}) \neq c(\mathbf{x})$ where $\mathbf{r} = \mathbf{r} = \mathbf$

How Can We Compute $W(\mathbb{P}_r, \mathbb{P}_{\theta})$?

Wasserstein GANs rely on the following expression (Kantorovich-Rubinstein Duality):

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{f \text{s.t.} \|f\|_L < 1} \left(\mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{y \sim \mathbb{P}_{\theta}}[f(y)] \right),$$

where $\|f\|_L < 1 \Leftrightarrow \|f(x_1) - f(x_2)\| < \|x_1 - x_2\|$ i.e. f has to be 1-Lipschitz.

Kantorovich-Rubinstein Duality: Intuition (1)

When $W(\mathbb{P}_r, \mathbb{P}_{\theta})$ is large, it is possible to find an f so that

$$\sup_{f \text{s.t.} \|f\|_L < 1} \left(\mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{y \sim \mathbb{P}_\theta}[f(y)] \right)$$

is large:

Other Adversarial Examples

$$\min_{\mathbf{r}} \|\mathbf{r}\|_2$$
 subject to $c(\mathbf{x} + \mathbf{r}) \neq c(\mathbf{x})$

where

- · x is an image and
- c(.) is the class predicted by an already trained network.

Predicted class: 'Indian elephant'

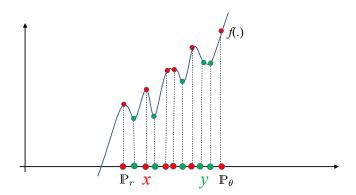
Seved-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard, DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks. CVPR 2016.

Kantorovich-Rubinstein Duality: Intuition (2)

When $W(\mathbb{P}_r, \mathbb{P}_{\theta})$ is small, it is not possible to find an f so that

$$\sup_{f \text{s.t.} \|f\|_L < 1} \left(\mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{y \sim \mathbb{P}_\theta}[f(y)] \right)$$

is large under the constraint that f is Lipschitz:



So What?

$$W(\mathbb{P}_r, \mathbb{P}_\theta) = \sup_{f \text{s.t.} \|f\|_L < 1} \left(\mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{y \sim \mathbb{P}_\theta}[f(y)] \right),$$

where $||f||_L < 1 \Leftrightarrow ||f(x_1) - f(x_2)|| < ||x_1 - x_2||$ i.e. f has to be 1-Lipschitz.

Why is this useful?

Using the Kantorovich-Rubinstein Duality to Compute $W(\mathbb{P}_r,\mathbb{P}_{\theta})$

$$W(\mathbb{P}_r,\mathbb{P}_\theta) = \sup_{f \text{s.t.} \|f\|_L < 1} \left(\mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{y \sim \mathbb{P}_\theta}[f(y)] \right),$$

where $||f||_L < 1$.

If we have a parameterized family of functions f_w , where w are the parameters and $\|f_w\|_L < 1$ for any w, then we can estimate $W(\mathbb{P}_r, \mathbb{P}_\theta)$ using:

$$\begin{split} W(\mathbb{P}_r, \mathbb{P}_{\theta}) &= & \max_{w} \left(\mathbb{E}_{x \sim \mathbb{P}_r}[f_w(x)] - \mathbb{E}_{y \sim \mathbb{P}_{\theta}}[f_w(y)] \right) \\ &= & \max_{w} \left(\frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} f_w(x) - \frac{1}{N_z} \sum_{z \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} f_w(g_{\theta}(z)) \right) \end{split}$$

Finally

Recall that we want:

$$\min_{\theta} W(\mathbb{P}_r, \mathbb{P}_{\theta}).$$

We have:

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \max_{w} \left(\frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} f_w(x) - \frac{1}{N_z} \sum_{z \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} f_w(g_{\theta}(z)) \right).$$

Idea: Implement f_w with a deep network:

$$\min_{\theta} \max_{w} \left(\frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} f_w(x) - \frac{1}{N_z} \sum_{z \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} f_w(g_{\theta}(z)) \right).$$

(we will need to constrain f_w to be 1-Lipschitz)

Comparison with the Original Formulation

Original GANs:

$$\min_{G} \max_{D} \left(\frac{1}{|\mathcal{T}|} \sum_{\mathbf{x} \in \mathcal{T}} \log D(\mathbf{x}) + \frac{1}{N_{\mathbf{z}}} \sum_{\mathbf{z} \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} \log (1 - D(G(\mathbf{z}))) \right) \,,$$

Wasserstein GANs:

$$\min_{\theta} \max_{w} \left(\frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} f_w(x) - \frac{1}{N_z} \sum_{z \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} f_w(g_{\theta}(z)) \right).$$

D is a classifier but f_w is not. It is usually called the critic.

Wassertein GAN Algorithm

for number of training iterations do

for k steps do

Sample minibatch of m samples $\{z^{(1)}, \dots, z^{(m)}\}$ Sample minibatch of m samples $\{x^{(1)}, \dots, x^{(m)}\}$

Update parameters w for the critic f_w by stochastic gradient ascend.

 $w \leftarrow \text{clip}(w, -c, +c) \# f_w$ should be Lipschitz

end for

Sample minibatch of m samples $\{z^{(1)}, \dots, z^{(m)}\}$

Update parameters θ for the generator g_{θ} by stochastic gradient descend.

end for

Forcing f_w to be 1-Lipschitz

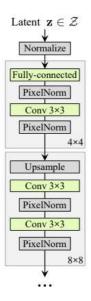
Original solution: $w \leftarrow \operatorname{clip}(w, -c, +c)$

Better solution: Add a term that constrains the gradient of f_w wrt x.

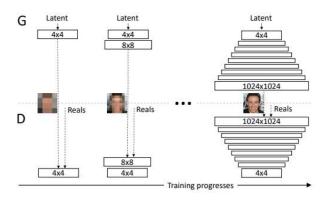
$$\min_{\theta} \max_{w} \left(\frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} f_w(x) - \frac{1}{N_z} \sum_{z \sim \mathcal{N}(\mathbf{0}; \mathbf{I})} f_w(g_{\theta}(z)) - \lambda \frac{1}{|\mathcal{T}|} \sum_{x \in \mathcal{T}} (\|\nabla_x f_w(x)\|_2 - 1)^2 \right)$$

Gulrajani17.

Image Generators



Progressive GANs



Karras18.

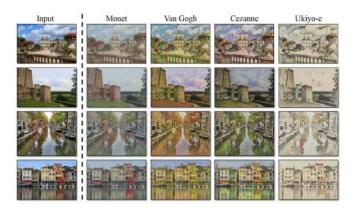
Progressive GANs: Results

Generated Image

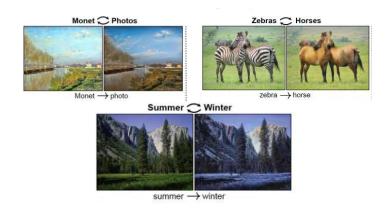
Nearest Neighbor in the training set

CycleGAN

How can we make sure we preserve the content of an input image?

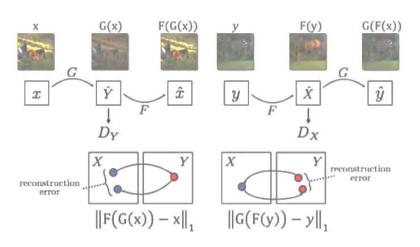


CycleGAN



Zhu17.

CycleGAN



Zhu17.

Deep Learning applied to Computer Vision problems

- Object Detection;
- ► Image Segmentation;
- Articulated Object Detection;
- etc.

How can we formalize these problems into Deep Learning problems?

Object Detection and Localization: How?

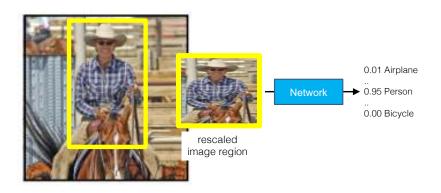
R-CNN (1)

Input Image

Region Proposals No learning (yet)

R.B. Girshick et al. "Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation". In: *Conference on Computer Vision and Pattern Recognition*. 2014, pp. 580–587.

R-CNN (2)

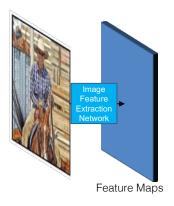


R-CNN (3)

Problem: In practice, many region proposals. R-CNN inefficient since image locations are processed many times.

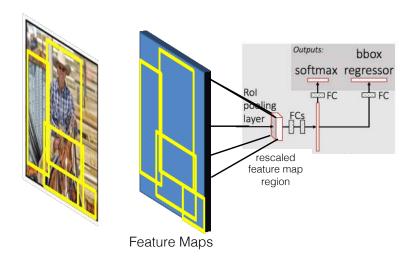
Fast R-CNN

Convolutions are applied only once to the image to extract image features: Much faster.

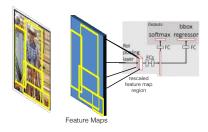


Ross B. Girshick. "Fast R-CNN". In: *International Conference on Computer Vision*. 2015.

Fast R-CNN (2)



Fast R-CNN: Loss Function (1)



Loss function for 1 region:

$$\mathcal{L}(\Theta) = -\log p_c(f_{\mathsf{cl}}(\mathbf{x};\Theta)) + \lambda 1_{[c \ge 1]} \mathcal{L}_{\mathsf{bbox}}, \tag{15}$$

where:

- x is the rescaled region in the feature maps;
- ightharpoonup c is the true class for \mathbf{x} . c=0 corresponds to the background.
- \triangleright \mathcal{L}_{bbox} is a loss term to refine the region bounding box (see next slide);
- \triangleright λ is a weight.

Fast R-CNN: Loss Function (2)

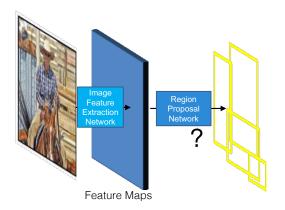
 \mathcal{L}_{bbox} is a loss term to refine the region bounding box:

$$\mathcal{L}_{\text{bbox}} = (u_1 + f_{\text{bbox}}(\mathbf{x}; \Theta)[0] - u_1^{gt})^2 + (v_1 + f_{\text{bbox}}(\mathbf{x}; \Theta)[1] - v_1^{gt})^2 + \dots$$

where $(u_1,v_1)\times (u_2,v_2)$ are the coordinates of the region bounding box, and $(u_1^{gt},v_1^{gt})\times (u_2^{gt},v_2^{gt})$ are the coordinates of the region bounding box.

Faster R-CNN

Learns to predict the region proposals:



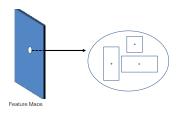
Challenges: the number of regions varies with the image, each region has a different size.

S. Ren et al. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". In: *Advances in Neural Information Processing Systems*, 2015.

Faster R-CNN: Region Proposal Network

For each 2D location in the feature maps: consider 3 "anchor boxes" and predict for each anchor box:

- If the anchor box overlaps with an object;
- An offset to adapt the anchor box.

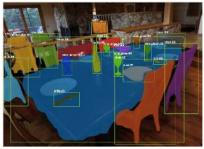


Loss function for 1 image x with $\mathcal{B} = \{B_i\}_i$ ground truth bounding boxes:

$$\mathcal{L}(\Theta_2) = -\sum_{A \in A} \log p_{c(A,\mathcal{B})}(g(\mathbf{x};\Theta_2)[A]) + \lambda c(A,\mathcal{B}) \mathcal{L}_{\mathsf{bbox}}, \quad (16)$$

with $c(A, \mathcal{B}) = 1$ if Anchor box A overlaps with at least one bounding box B_i in \mathcal{B} , 0 otherwise.

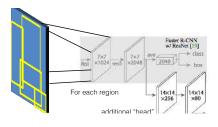
Mask-RCNN



Kaiming He et al. "Mask R-CNN". In: *International Conference on Computer Vision*. 2017.

Mask-RCNN (2)

In addition to predicting the class and the "delta bounding box", predict a binary mask for each possible class.



Loss function for one region:

$$\mathcal{L}(\Theta) = -\log p_c(f_{\mathsf{cl}}(\mathbf{x};\Theta)) + \lambda 1_{[c \ge 1]}(\mathcal{L}_{\mathsf{bbox}} + \lambda_2 \mathcal{L}_{\mathsf{mask}}), \quad (17)$$

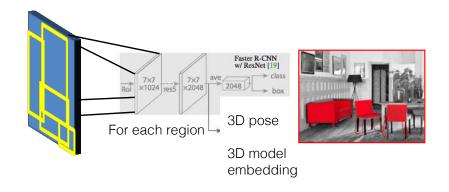
where:

- ightharpoonup c is the true class for \mathbf{x} . c=0 corresponds to the background.
- $ightharpoonup \mathcal{L}_{mask}$ is a loss term to refine the region bounding box:

$$\mathcal{L}_{\mathsf{mask}} = \|f_{\mathsf{mask}}(\mathbf{x}; \Theta)[c] - m\|^2$$

ightharpoonup m is the ground truth mask for the region.

Mask-RCNN: Extensions



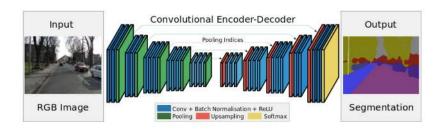
Alexander Grabner, Peter M. Roth, and Vincent Lepetit. "3D Pose Estimation and 3D Model Retrieval for Objects in the Wild". In: *CVPR*. 2018.

Deep Learning applied to Computer Vision problems

- ► Object Detection;
- Image Segmentation;
- Articulated Object Detection;
- etc.

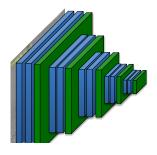
Image Segmentation

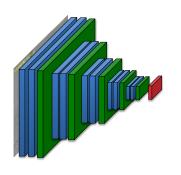
Typically relies on Encoder-Decoder architecture (also called Hour-Glass network):

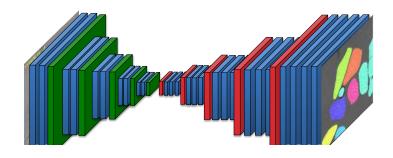


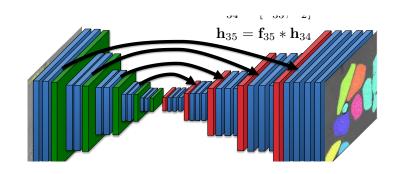
V. Badrinarayanan, A. Kendall, and R. Cipolla. "Segnet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation". In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* (2015).

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. "U-Net: Convolutional Networks for Biomedical Image Segmentation". In: *MICCAI*. 2015.









Loss function:

$$\mathcal{L}(\Theta) = \sum_{\mathbf{x}} \sum_{l} -\log p_{cl(\mathbf{x},l)}(f(\mathbf{x};\Theta)[l])$$
 (18)

Deep Learning applied to Computer Vision problems

- ► Object Detection;
- ► Image Segmentation;
- Articulated Object Detection;
- etc.

Articulated Pose Prediction

Z. Cao et al. "Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields". In: *Conference on Computer Vision and Pattern Recognition*. 2017.

How can we formalize this problem?

Predicting Heat Maps

Convolutional Pose Machines

Shih-En Wei et al. "Convolutional Pose Machines". In: Conference on Computer Vision and Pattern Recognition. 2016.

Multiple Articulated Objects

Multiple Articulated Objects



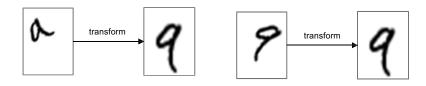
Z. Cao et al. "Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields". In: *Conference on Computer Vision and Pattern Recognition*. 2017.

To Go Further

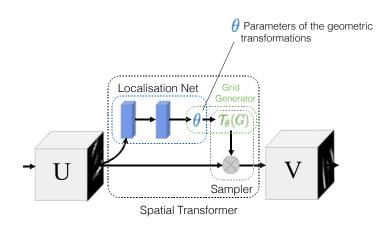
- Articulated Object Detection;
- Spatial Transformers;
- Dealing with Unstructured Input;
- Self-Learning;
- ▶ Differentiable Pipelines and End-to-End Learning.

Spatial Transformers

Computes and applies a spatial transformation on an image, from the image itself.

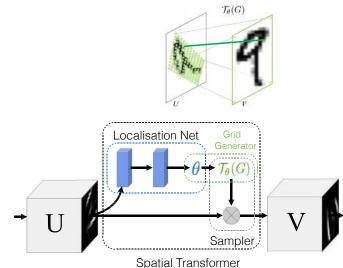


Differentiable Module

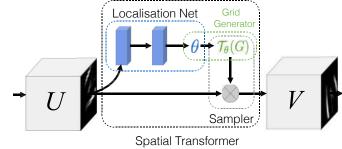


Example: Affine transformation

$$\left(\begin{array}{c} x_i^s \\ y_i^s \end{array}\right) = \mathcal{T}_{\theta}(G_i) = \mathtt{A}_{\theta} \left(\begin{array}{c} x_i^t \\ y_i^t \\ 1 \end{array}\right) = \left[\begin{array}{ccc} \theta_{11} & \theta_{12} & \theta_{13} \\ \theta_{21} & \theta_{22} & \theta_{23} \end{array}\right] \left(\begin{array}{c} x_i^t \\ y_i^t \\ 1 \end{array}\right)$$



Example: Affine transformation



$$x_i^s \\ y_i^s \\ y_i^s \\ v_i^t \\ v_i^$$

n=1 m=1Bilinear sampling kernel:

 $n=1 \ m=1$

$$V_i^c = \sum_{i=1}^{H} \sum_{n = 1}^{W} U_{n \times m}^c \max(0, 1 - |x_i^s - m|) \max(0, 1 - |y_i^s - n|)$$

 $V_i^c = \sum \sum U_{n \times m}^c k(x_i^s - m)k(y_i^s - n) \quad \forall i \in [1..HW] \ \forall c \in [1..C]$

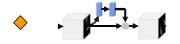
$$\partial V^c$$
 H W

$$\frac{\partial V_i^c}{\partial U_{n\times m}^c} = \sum_{n=1}^H \sum_{m=1}^W \max(0, 1-|x_i^s-m|) \max(0, 1-|y_i^s-n|)$$

$$\frac{\partial V_i^c}{\partial x_i^s} = \sum_{n=1}^H \sum_{m=1}^W U_{n\times m}^c \max(0, 1 - |y_i^s - n|) \times \begin{cases} 0 & \text{if } |m - x_i^s| \geq 1\\ 1 & \text{if } m \geq x_i^s\\ -1 & \text{if } m \leq x_i^s \end{cases}$$

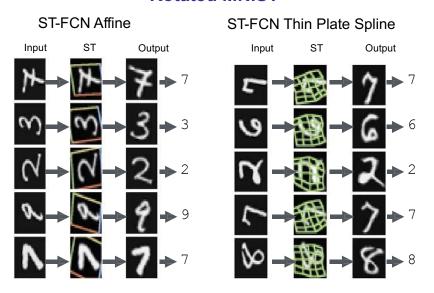
Spatial Transformer Network

Spatial Transformers are differentiable, and so can be inserted at any point in a feed forward network and trained by back propagration



Example: digit classification, loss: cross-entropy for 10 way classification

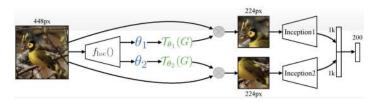
Rotated MNIST



Fine Grained Visual Categorization

CUB-200-2011 birds dataset: 200 species of birds

Fine Grained Visual Categorization (2)

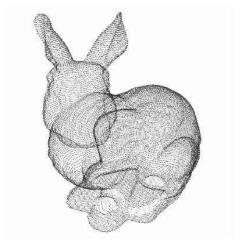


End-to-end learning: all the modules (f_{loc} , Inception classifiers are trained together)

To Go Further

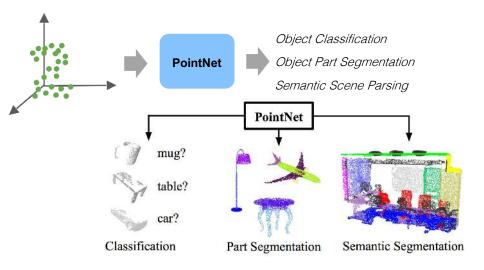
- Articulated Object Detection;
- ► Spatial Transformers;
- Dealing with Unstructured Input;
- Self-Learning;
- ▶ Differentiable Pipelines and End-to-End Learning.

Dealing with Orderless Input



C.R. Qi et al. "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation". In: *Conference on Computer Vision and Pattern Recognition*. 2017.

End-to-end learning for **scattered**, **unordered** point data **Unified** framework for various tasks



Challenges

- Unordered point set as input: Model needs to be invariant to N! permutations;
- Also, model needs to be invariant under geometric transformations.

Permutation invariance:

$$f(x_1, x_2, \dots, x_n) = f(x_{\sigma(1)}, x_{\sigma(2)}, \dots, x_{\sigma(n)}).$$
(19)

Examples:

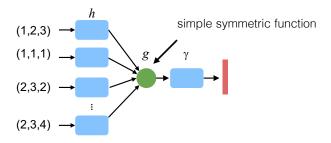
$$f(x_1, x_2, \dots, x_n) = \max\{x_1, x_2, \dots, x_n\}$$
 (20)

$$f(x_1, x_2, \dots, x_n) = x_1 + x_2 + \dots + x_n \tag{21}$$

How can we construct a family of symmetric functions with neural networks?

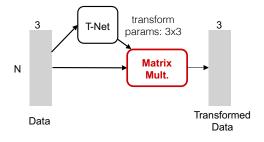
$$f(x_1, x_2, \dots, x_n) = \gamma(g(h(x_1), h(x_2), \dots, h(x_n)))$$
 (22)

is symmetric if g is symmetric.



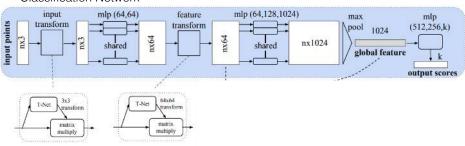
Use neural networks for h, γ , and max-pooling for g.

Invariance to Geometric Transformation



Full Network

Classification Network

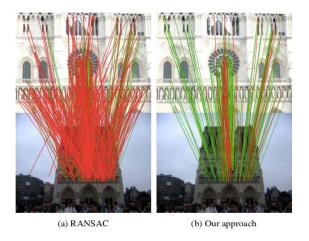


n: number of points;

k: number of possible objects;

m: number of possible segments.

Application to Outlier Detection



K. M. Yi et al. "Learning to Find Good Correspondences". In: Conference on Computer Vision and Pattern Recognition. 2018.

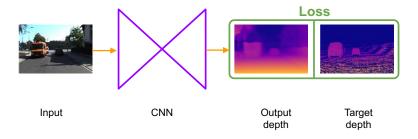
To Go Further

- ► Articulated Object Detection;
- ► Spatial Transformers;
- Dealing with Unstructured Input;
- Self-Learning;
- ▶ Differentiable Pipelines and End-to-End Learning.

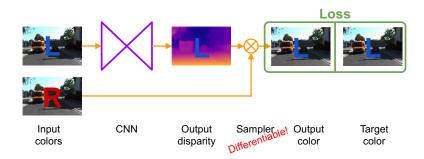
Self-Learning for Deep Monocular Depth Estimation

C. Godard, O. Mac Aodha, and G.J. Brostow. "Unsupervised Monocular Depth Estimation with Left-Right Consistency". In: Conference on Computer Vision and Pattern Recognition. 2017.

Supervised Depth Prediction



Unsupervised Depth Prediction



To Go Further

- Articulated Object Detection;
- ► Spatial Transformers;
- Dealing with Unstructured Input;
- Self-Learning;
- Differentiable Pipelines and End-to-End Learning.

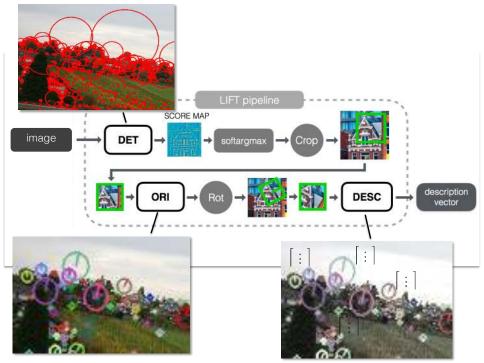
Differentiable, End-to-End Computer Vision Pipelines

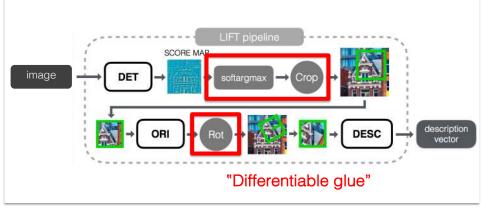
We can even train complex pipelines made of multiple networks so that the networks work well together.

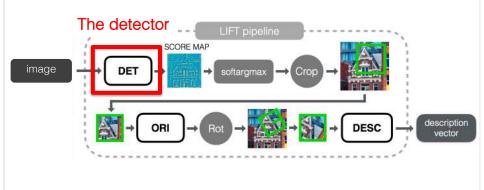
For that, we need to formalize the problem with a single loss function that is differentiable. The networks are then trained jointly, "end-to-end" from the input to the final output.

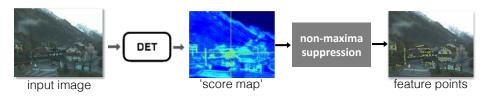
Example:

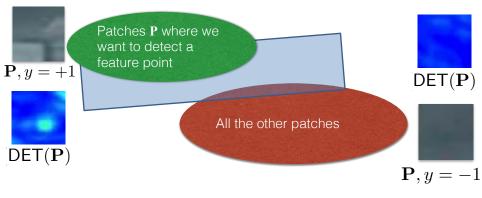
K. M. Yi et al. "LIFT: Learned Invariant Feature Transform". In: *European Conference on Computer Vision*. 2016.



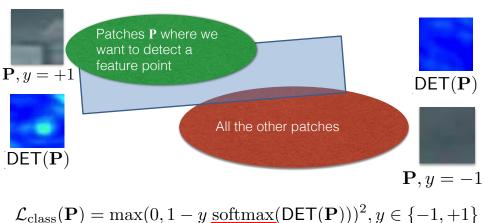








$$\mathcal{L}_{\text{class}}(\mathbf{P}) = \max(0, 1 - y \max(\mathsf{DET}(\mathbf{P})))^2, y \in \{-1, +1\}$$

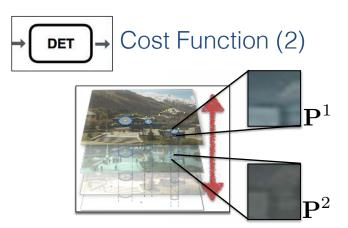


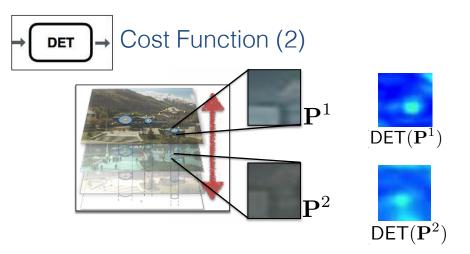
Training with SfM Keypoints

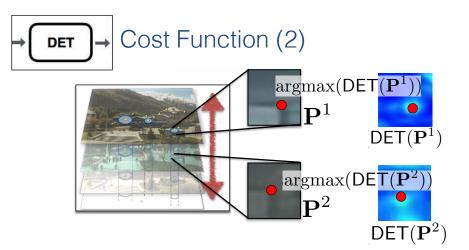
Piccadilly (pic)

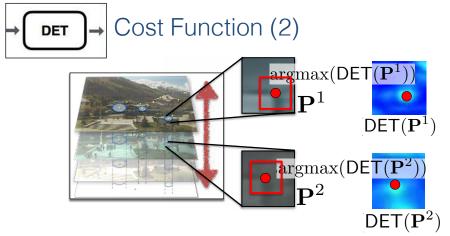
Roman Forum (rf)

- We need variability (illumination, perspective, etc). We build SfM reconstructions from photo-tourism sets.
- We keep only **points with SfM correspondences** as positive examples, that is, we **learn to find repeatable points**.

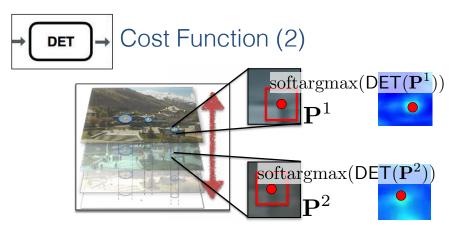






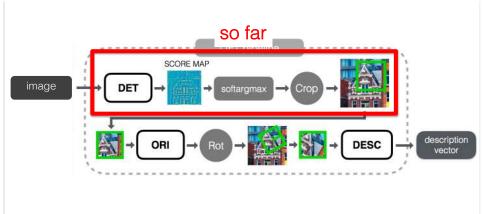


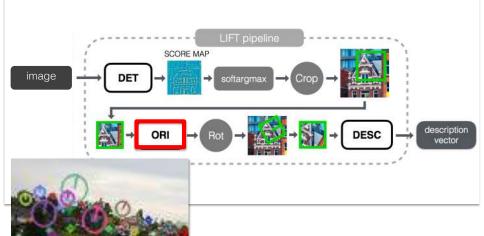
$$\mathcal{L}_{\mathrm{pair}}(\mathbf{P}^1, \mathbf{P}^2) = \| \quad \mathsf{DESC}(\mathrm{Crop}(\mathbf{P}^1, \mathrm{argmax}(\mathsf{DET}(\mathbf{P}^1)))) - \\ \quad \mathsf{DESC}(\mathrm{Crop}(\mathbf{P}^2, \mathrm{argmax}(\mathsf{DET}(\mathbf{P}^2))))$$



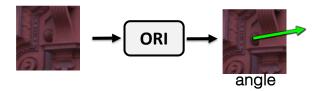
$$\mathcal{L}_{\text{pair}}(\mathbf{P}^{1}, \mathbf{P}^{2}) = \| \text{DESC}(\text{Crop}(\mathbf{P}^{1}, \underbrace{\text{softargmax}}(\text{DET}(\mathbf{P}^{1})))) - \\ \text{DESC}(\text{Crop}(\mathbf{P}^{2}, \underbrace{\text{softargmax}}(\text{DET}(\mathbf{P}^{2})))) \|^{2}$$

$$\overline{\operatorname{softargmax}(\mathbf{S})} = \frac{\sum_{\mathbf{x}} \exp(\beta \mathbf{S}(\mathbf{x})) \mathbf{x}}{\sum_{\mathbf{x}} \exp(\beta \mathbf{S}(\mathbf{x}))}$$

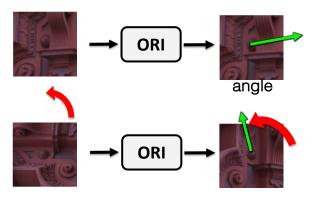




We want the orientation estimator to provide **consistent** results, regardless of imaging changes



We want the orientation estimator to provide **consistent** results, regardless of imaging changes



Learning Orientations Implicitly: Siamese Network

$$\begin{array}{c} \longrightarrow \\ \widehat{\mathbf{P}}^1 \end{array} \longrightarrow \begin{array}{c} \mathsf{DESC} \longrightarrow \left[\begin{array}{c} \vdots \\ \vdots \end{array} \right]$$

$$\begin{array}{c} \longrightarrow \\ \widehat{\mathbf{P}}^2 \end{array} \longrightarrow \begin{array}{c} \mathsf{ORI} \longrightarrow \\ \mathsf{DESC} \longrightarrow \left[\begin{array}{c} \vdots \\ \vdots \end{array} \right]$$

Learning Orientations Implicitly: Siamese Network

$$\begin{split} \mathcal{L}_{\mathrm{pair}}(\widehat{\mathbf{P}}^{1}, \widehat{\mathbf{P}}^{2}) = \| & \ \mathsf{DESC}(\mathrm{Rot}(\widehat{\mathbf{P}}^{1}, \mathrm{angle}(\widehat{\mathbf{P}}^{1}))) - \\ & \ \mathsf{DESC}(\mathrm{Rot}(\widehat{\mathbf{P}}^{2}, \mathrm{angle}(\widehat{\mathbf{P}}^{2}))) \end{split}$$

$$\begin{array}{c}
\operatorname{Rot}(\widehat{\mathbf{P}}^{1},\operatorname{angle}(\widehat{\mathbf{P}}^{1})) \\
\widehat{\mathbf{P}}^{1} & \operatorname{ORI} \longrightarrow \operatorname{DESC} \longrightarrow \left[\begin{array}{c} \vdots \end{array} \right] \\
\operatorname{Rot}(\widehat{\mathbf{P}}^{2},\operatorname{angle}(\widehat{\mathbf{P}}^{2}))
\end{array}$$

Learning Orientations Implicitly: Siamese Network

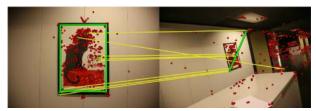
$$\begin{split} \mathcal{L}_{\mathrm{pair}}(\widehat{\mathbf{P}}^1, \widehat{\mathbf{P}}^2) = \| & \ \mathsf{DESC}(\mathrm{Rot}(\widehat{\mathbf{P}}^1, \mathrm{angle}(\widehat{\mathbf{P}}^1))) - \\ & \ \mathsf{DESC}(\mathrm{Rot}(\widehat{\mathbf{P}}^2, \mathrm{angle}(\widehat{\mathbf{P}}^2))) & \ \|^2 \end{split}$$

with $angle(\widehat{\mathbf{P}}) = arctan2(\mathsf{ORI}(\widehat{\mathbf{P}})^{[1]}, \mathsf{ORI}(\widehat{\mathbf{P}})^{[2]})$

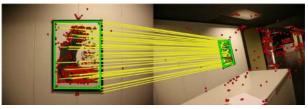
$$\begin{array}{c} \longrightarrow \\ \widehat{\mathbf{P}}^1 \end{array} \longrightarrow \begin{array}{c} \mathsf{DESC} \longrightarrow \left[\begin{array}{c} \vdots \\ \vdots \end{array} \right]$$

$$\begin{array}{c} \longrightarrow \\ \widehat{\mathbf{P}}^2 \end{array} \longrightarrow \begin{array}{c} \mathsf{ORI} \longrightarrow \\ \mathsf{DESC} \longrightarrow \left[\begin{array}{c} \vdots \\ \vdots \end{array} \right]$$

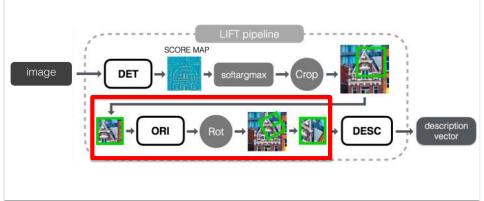
Learned Orientations

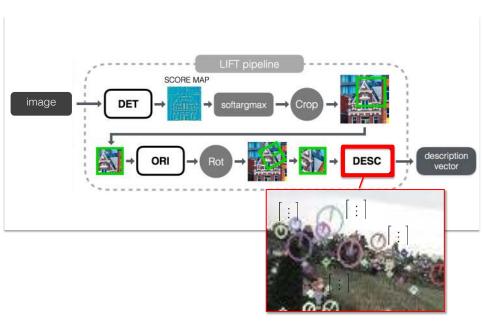


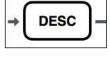
Dominant Gradient Orientations



Our Learned Orientations







Learning the Descriptor

$$\widehat{\widehat{\mathbf{P}}^2}$$

• Positive pairs: $\mathcal{L}_{\mathrm{pos}}(\widehat{\widehat{\mathbf{P}^1}},\widehat{\widehat{\mathbf{P}^2}}) = \|\mathsf{DESC}(\widehat{\widehat{\mathbf{P}^1}}) - \mathsf{DESC}(\widehat{\widehat{\mathbf{P}^2}})\|^2$

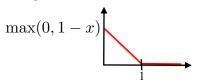
Learning the Descriptor

• Positive pairs:

$$\mathcal{L}_{\mathrm{pos}}(\widehat{\widehat{\mathbf{P}^{1}}},\widehat{\widehat{\mathbf{P}^{2}}}) = \|\mathsf{DESC}(\widehat{\widehat{\mathbf{P}^{1}}}) - \mathsf{DESC}(\widehat{\widehat{\mathbf{P}^{2}}})\|^{2}$$

• Negative pairs:

$$\mathcal{L}_{neg}(\widehat{\widehat{\mathbf{P}^1}}, \widehat{\widehat{\mathbf{P}^3}}) = \max(0, 1 - \|\mathsf{DESC}(\widehat{\widehat{\mathbf{P}^1}}) - \mathsf{DESC}(\widehat{\widehat{\mathbf{P}^3}})\|^2)$$



Hard example mining is very important for training

A Single, Global Cost Function

$$\min_{\{\mathsf{DET},\mathsf{ORI},\mathsf{DESC}\}} \sum_{\{(\mathbf{P},y)\}} \max(0,1-y \; \mathrm{softmax}(\mathsf{DET}(\mathbf{P})))^2 + \\ \sum_{(\mathbf{P}_1,\mathbf{P}_2)} \|\mathsf{DESC}\left(G(\mathbf{P}^1,\mathrm{softargmax}(\mathsf{DET}(\mathbf{P}^1))) - \mathsf{DESC}\left(G(\mathbf{P}^2,\mathrm{softargmax}(\mathsf{DET}(\mathbf{P}^2)))\right)\|^2 + \\ \sum_{(\mathbf{P}_1,\mathbf{P}_3)} \max(0,1-\|\mathsf{DESC}\left(G(\mathbf{P}^1,\mathrm{softargmax}(\mathsf{DET}(\mathbf{P}^1))) - \mathsf{DESC}\left(G(\mathbf{P}^3,\mathrm{softargmax}(\mathsf{DET}(\mathbf{P}^3))))\|^2 \right) \\ G(\mathbf{P},\mathbf{x}) = \mathrm{Rot}\left(\mathbf{P},\mathbf{x},\mathrm{angle}_{\mathsf{ORI}}(\mathrm{Crop}(\mathbf{P},\mathbf{x}))\right)$$