Optimization for Deep Learning

Vincent Lepetit

September 12, 2021



vVvVvvyVvVvVvVvyyy

Loss functions;

Generalization and Overfitting;
Optimization for Deep Learning;
Back-Propagation;

Automatic Differentiation;
Optimization Algorithms;

Optimization Techniques.



vVvVvyVvVvVvyyvyy

Loss functions;

Generalization and Overfitting;
Optimization for Deep Learning;
Back-Propagation;

Automatic Differentiation:
Optimization Algorithms;

Optimization Techniques.



How Can We Find the Parameters of a Deep Network?
Example of a two-layer network:

{ h(x) = g(Wx+b)
O(X) = Wgh(X) + by

In the case of supervised learning:
» Consider a training set made of pairs of input and expected
output (x;,€;);

> Introduce a loss function with a minimum © that corresponds
to good values for the parameters ©:

© = argmin £(0), (1)
©

with © = [W,b, W5, by).

» How do we define the loss function?

» How do we find a (good) minimum?



Loss Function

The loss function can be virtually any function that is
differentiable.

Basic loss functions correspond to the cross-entropy between the
expected values and the predicted ones:

N
L£(©) = _longmodel (e; [ o(x1;0)), (2)

i=1
where

» {(x;,€;)}i=1..n is the training set;

> 0(x;;0) is the output of the network with parameters © for
input x;;

P Dmodel(€ | 0(x;0)): How we compute the probability for a
value e given the output o(x;0©) of the network.

(the cross-entropy can also be seen here as the negative
log-likelihood of the training set given the predictions of the
network)



Regression Problems

If we take: pmodel(€ | 0(x;0)) = N (e; o(x;0),01):

E(@) = _lognijilpmodel(ei | O(Xi;e))

3
=l SN lei — (i) 2 + ko 3

(because N(e; 0,01) = cj exp(—|le —o|?/c2))

If we ignore constants kq and ko that do not influence minimum 6:

Z”ez_o xi;© ”2 (4)

which is simply the mean squared error (MSE).



Classification Problems
Training set: {(x;,¢;)}i=1..n, where ¢; = [1;C] is the expected
class index, among C' possible classes.
In this case, the output o(x;;0) of the network is taken to be a
C-vector: o(x;;0) € RC.

Let's introduce vector d = softmax(o):

exp(0;)
> =1 exp(o;)

» The softmax operation is a soft version of the operation
“maximum value of o is changed to 1, the other values are
changed to 0".

» The softmax operation transforms o into a distribution d over

the C classes:
Vid; € [0, 1] ;

Sdi=1. ©)

i=1



Classification Problems (2)

Training set: {(x;,¢;)}i=1.. N, where ¢; = [1;C] is the expected
class index, among C' possible classes.
Take: Pmodel(c| 0(x;0)) = d. with d = softmax(o(x;0)).

Loss function:

L£(©) =-—log ﬁlpmoda(cz‘ | 0(xi;0))
= (7)

N
= > —logsoftmax(o(x;;0)),
i=1

1=



Be Careful with Predicted Distributions!

Pmodel (¢ | 0(x;0)) = d. with d = softmax(o(x;0)).

d is not a reliable distribution. For example, if the input x does

not belong to any class, we would expect a uniform distribution for
d, which is not the case in practice.

M. Hein, M. Andriushchenko, and J. Bitterwolf. “Why RelLU
networks yield high-confidence predictions far away from the
training data and how to mitigate the problem”. In: CVPR. 2019.



» Loss functions;

» Generalization and Overfitting;



Generalization

We want to perform well on future, unseen data.

We minimize (in the case of MSE):

N
> llei—o(xi;;©)I?, (8)
i=1
on the training data, but what we would like to minimize is
Y lle—o(x;0)]?, (9)
(X,E)GTT

where T is the set of any other data.

In practice, a test set T is used to evaluate the performance of
the network. (77 should not be used during training!)



Generalization and Overfitting

The loss function can be small on the training data, but large on
the test data:

— Overfitting.

Appropriate capacity Overfitting
(4 (4
ini ()

@ Training sample . [ ] . )
@ Test sample

. !

To To
Fitting a polynomial of Fitting a polynomial of

dearee 2 dearee 9



Preventing Overfitting

Use a validation set: Monitor the loss on the validation set during
training, stop when it starts increasing:

= 0.20 T T T T
g —e Training set loss
< . .
= 0.15 |1 — Validation set loss [
el
&
< t
.g we WWMM |
3
a
&
g8 0.05 |- 4
@
Q
= 0.00 . - .
0 50 100 150 200 250

Time (epochs)



Regularization

For example:
h(x) = g(Wx+b)
o(x) = W3 h(x) +bs

L£(©) =31, ei —o(x:;0)|
(10)
= L£(0) =L [lei —o(xi; ©) ||+ A[W]]>.

See also Slides on optimization techniques.



» Loss functions;
» Generalization and Overfitting;

» Optimization for Deep Learning;



Optimization for Deep Models

Variants of Gradient Descent:

0L(©)
G%G—AW. (11)




Gradient Descent

Variants of Gradient Descent:

0L(O)
O+ 06— )\W . (12)

More sophisticated algorithms require computing the Hessian (or
an approximation), and/or its inverse (or an approximation).

Many gradient descent iterations can be performed when these
algorithms perform a single iteration.

— Gradient descent still converges faster.

Léon Bottou. “Large-Scale Machine Learning with Stochastic
Gradient Descent”. In: International Conference on Computational
Statistics. 2010.



Local Minima?




A Function in 2D




Not Many Local Minima in Large Spaces

For ©* to be a local minimum, we need:

> Hac (6%)

’ =0, and
» all the eigenvalues of (@E(G)*)) are positive.

For random functions in n dimensions, the probability for all the
eigenvalues to be all negative is 1/n.



“Almost Local Minima” Seem to Be Good Minima!

§30 o

T onl '

5 20 pd

o 10

i= 19 #J

S Vapem ®® |
0.00 0.12 0.25

Index of critical point o

«: Proportion of negative eigenvalues.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. 2014.



» Loss functions;

» Generalization and Overfitting;

» Optimization for Deep Learning;

» Computing the gradient efficiently: Back-Propagation;



Computing the Gradient of the Loss Function: Example

Case of a 3-layer network, and least-squares loss:

L(O) = Z L(o(x0;0),e) .

(x0,e)ET
x1 = WiXxg
x1 = g(X1)
X2 = Waxy
X3 = g(X2)
X3 = W3X2 = O(XQ; @)
L{o(x0:0),€) = x5 — e

@ == [W17W27W3] .

We would like to compute:

(gg) e. (;“Lfl)(o(xo;@),e) | (8%62)(..)  and <

(13)

(14)

(15)

oL
awg)(“) .
(16)



Computing <3(2VLS>

1
L =glxs—el?
= 1 [ 1\2
) ;(Xg e’) o

2
- 52 (ZW?X% —el> because x5 = E ngx%,
1

g J



Computing (%V) (2)

2
L = %Z (Z Wix) — ei) (18)
Thus:
U WzJXJ _ ez - WZ]X] _ez (19)
awlgl z@: (zj: 3 2 ) awlgl (ZJ: 3 2 )

We have:

0 OWY
OWH (Z Wix;—e ) - (Z IWH! j) (20)

OWY [ 1ifi=kandj=1, and (21)
OWE "] 0 otherwise.




Computing (5%%,3) (3)

We have:

d OWY

oWE (%:Wgax;_ei) _ (Z aw’g’xé> (22)

J

ang_{ufz':kandj:z,and (23)

— 8W’§l ~ ] 0 otherwise.

oWy ;\ [ xb ifk=i, and
—><zj: 8W’§lx2 "] 0 otherwise (24)




Computing (80\763> (4)

oL

0
awkl Z (ZWS XQ —e ) 8Wkl (ZWJ X2 —e ) (25)

(ZW?xg—ei) =x,—e' (26)
J
ZQW” i\ | %t ifk=4, and (27)
OWH 21710 otherwise
L
A (28)



Computing (&) (5)

(29)

(30)



Computing (3%62>
2
L =3 (ngfxg_ei) (31)

oL 0

oWl Z (ZW:% x})—e ) Wi (ngjxg _ei> (32)

0

i ox’
awlgl (%:szx% ) (sza 6W2’“l) (33)

ox3 7
OWH!

(34)



Computing <a%2> (2)

)_(2 = W2X1
X3 = g(X2)
ox3 3, _;
oWE oWkl (962))
0%
= g/(X%)WQIQd

= gl(i%)m (Zm: W%"Scﬁ“)

o) imm x! if k=3, and
8W'2"l (ZW2 X1 ) _{ 0 otherwise

m

(35)

(36)

(37)



Computing <£VLQ> (3)

ox’ gy i k=
2 { g (x5")xy ifk=j, and (38)

oWk ) 0 otherwise.

J
i 0%y

(Z Wéj 3W12fz) = Wékgl(ig)xll (39)




Computing (%) (4)

oL

o z(zw )aw(zw) 0

9 1j J i ik 1okl
8W’§l ZW3 x5 —e' | = W5'¢'(x5)x3 (42)
J
oL ) % ]
Fwh — 2 (x5 =) Wi/ (=) (43)



Computing <

;) (5)

oL .
aWE = <X3 - ez> Wiy (x5)x]
oL -
gw, = (Wix—e)og/(x))x]
- = (W]ds09 (%)) x]

(44)



Computing ((f&)

OL
O0W,

= (Wis0¢(x1))x]

(46)



Back-Propagation

oL

e 5x)

IW, Tl"o

— /
%1 = Wixo 51 =W3804 (%)
x1 = g(X1) oL = o)
)_(2:W2X1 8W2_ 2%
Xa = g(X2) 8 =Wid509 (z)
x3 = W3Xa = 0(x0;0) oL
L(o(x0;0),e) = 1||x3 —e||? T — §ax
(o)) = blha—el | DL g

53=X3—e

(47)

Juergen Schmidhuber. “Deep Learning in Neural Networks: An
Overview". In: arXiv Preprint (2014).



Vanishing or Exploding Gradients

oL
oW,
= 51xg

- (W;52 @g’(fl)) X0 (48)
= (W] (W]8300 (7)) 0d @))%

- (W;r (WgT (x3—e) @g’(a?g)) @g'(@)) X0

Vanishing or exploding gradients happen if the coefficients of the
W, the x;, the ¢/(z;) become much larger or much smaller than 1:



Loss functions;

Generalization and Overfitting;
Optimization for Deep Learning;
Back-Propagation;

Automatic Differentiation;



Automatic Differentiation

How do we compute the derivatives in practice?

» manually working out them, and coding them;
» numerical differentiation using finite difference approximation;
» symbolic differentiation (exists in Mathematica, Mapple, etc.);
» automatic differentiation (autodiff).
Implemented in PyTorch, and in the tf.GradientTape API in
TensorFlow 2.

A. G. Baydin et al. "Automatic Differentiation in Machine
Learning: A Survey”. In: JMLR (2018).



Automatic Differentiation

e e ey
Fillx) — 1282(1 z){ 51 165)(1 2«32

S 1 80 641 Tl 22)%(1 S | #x*)?
Mannal 61 — 2)2(1 — A + 8732 — 256 (1 — )1 —
Differenliation 2w}l — 8 P

=z

G =450 - L)

Fizy lo 64wl -0 20201 8 8%

Coding Coding
v
F{ET £2{x):
Vex return 1284x%(1 - x)«(-8 + 16%x)
fori=1ted {01 - 20x)72) & (1 - Bax + Bexax)
v=atyx(l - v) + 640 {1 - x)#((1 - 24x)"2)+ ({1
return v = 82x + Baxxx} 2) - (84=xe(1 -

24x)"2) = (1 - B¥x + Baxex) "2 -

or, in closed-form. _Symbalio 256xxh (2 — X)4 (1~ 24xIx(L - Bax
Differentinzion ..
¥ g + Bxxax) "2
o of the Clesed-form
return 64exs (1-x)+ { (1-20x)°2) Fileg) =1

#(1-Brx+Bexex} 2

Autoratic Numerical
Differentiation Differentiation
v
£'(x):
(v,dv) = (x,1) £/(x):
fori=1to3 b = 0. 000001
(v dv) = (dewa{Ll-v), Ledv-84yxdy) return (£{x+1k) —£)) / h

ratarn (v,dv}

£ 4{x,) =
Apiprox




Automatic Differentiation

| 2

>

Autodiff can differentiate computer program functions (even
with branching, loops, and recursion).

This is because a program function executes a sequence of
elementary arithmetic operations (addition, subtraction,
multiplication, division, etc.) and elementary functions (exp,
log, sin, cos, etc.). By applying the chain rule repeatedly to
these operations, derivatives of arbitrary order can be
computed automatically.

Accurate evaluation of derivatives at machine precision with
only a small constant factor of overhead.



Case of Symbolic Differentiation

Consider for example:

49
(@) = (L @) g(2) + f() (49(x)) )

Waste operations when computing both h(z) and - (h(x)).

Basis of autodiff: Apply symbolic differentiation at the elementary
operation level and keep intermediate numerical results, in lockstep
with the evaluation of the main function.



Example
Consider f(x1,29) =1In(x1) + 122 —sin(xs).

Computation graph for f(z1,22):

I

T2

with
V-1 =T
2] = T2
U1 =lnv-1
V2 — U (50)
V3 = sinwvyg
Vg =v1+v2
Vs = V4 — U3



Tangent Variables

f(z1,22) =In(z1) + 2122 — sin(x2).

x (v 1) (o) ”

Fnz)

U3

" &

For computing the derivative of f with respect to =1, introduce the

tangent variables:
o,

V; = .
! 81‘1

(51)



Derivative of f with Respect to x

For computing the derivative of f with respect to x1, introduce the
tangent variables:

8%’
V; = . (52)
6$1
First, set v_1 =21 < 1 and vp =25 <0 .
: 0
Then, compute 95 = (TL:
r1
Forward Primal Trace Forward Tangent (Derivative) Trace
V-1 =TI =2 l’l—-|=:i'| =1
vo =Tz =5 Vo =2 =0
vy =111U_| ='In2 !.)1 =‘l‘)..1/'U_1 =1/2
va =v-1Xvg =2X35 V2 =U_1XVt+PpXv-1 =1X5+0x2
v3 =sinvg =sinb v3 = Up X COSUy =0 X cosd
Ve =v+ v =0.693 + 10 Vg =v1+02 =05+5
Vs =UV4—U3 = 10.693 + 0.959 U5 =14 — 13 =55—-0
Y u =n = 11.RK2 V¥V & = =IK:K




Dual Numbers
Defined as v + e, with € # 0 and €2 = 0.
Then:

(v+0€)+ (utue) = (v+u)+ (V+u)e;
(v+ve)(u+ue) = (vu) 4+ (vi+ vu)e;
f(v+ve) = f(v)+ f'(v)ve (* - from Taylor expansion);

Flg(v+0e)) = f(g(v)) + f'(g(v))g'(v)ve (by applying * twice(s):;)

— We can compute the derivative of a function f(z) by

computing:

dJ;f) = [coefficient of €](f(v+ 1e)). (54)




Reverse Accumulation Mode

The previous method is not efficient in the case of f: R” — R™
with n > m (as usually in Machine Learning).

Introduce 'adjoint’:

a .
o= 20 (55)
Ovi
to =22 =5 &2 = %o =1.716
v =lnvy =In2 Boy=By + 8ok =Py + B /vy =55
v =voi Xty =2x5 fo =@+ dga =fo+dxv.y =176
o= ﬂv,%"; =iz X 1y =5
vy =sinvg = sin§ f =djs =iy xcosty =—0.284
ve =vrbuvz = 0603410 B2 =G =7y X1 =1
LN =n,gj—: =g x1 =1
vy =ve—vy = 10.693 + 0.959 By =D =g x (=1) =—1

The 2 derivatives can be computed in 1 pass, instead of 2 for the
forward mode.



» Loss functions;
Generalization and Overfitting;

Optimization for Deep Learning;

>

>

» Back-Propagation;

» Automatic Differentiation;
>

Optimization Algorithms;



Stochastic Gradient Descent (SGD)

Loss function:

ZL 0(x;;0 . (56)
o'l «— o' —nG((eh), (57)

where 9
G(e") = 26 L(o(xi,;©¢),€i,) - (58)

Can converge despite the fact that £(©) is not convex.



Stochastic Gradient Descent (SGD)

ol — ot —n,G(eh). (59)

Converges if the network is sufficiently overparameterized:

Theorem. Let (x;,€;),-,-, be a training set satisfying

min; j.;2; [|[x; —X;ll2 > & > 0. Consider fitting the data using a
feed-forward neural network with ReLU activations. Denote by D
(resp. W) the depth (resp. width) of the network. Suppose that
the neural network is sufficiently over-parametrized, i.e.,

1
W > ponnomiaI(n,D,g). (60)

Then, with high probability, running SGD with some random
initialization and properly chosen step sizes 7; yields £(0©) < ¢ in
t < log %

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. "“A convergence

theory for deep learning via over- parameterization”. In: arXiv
Preprint. 2018.



Mini-Batch SGD

Loss function:

where

(61)

(62)

(63)



Momentum-Based SGD

gl pg't+(1-p)G(OY)

AO! + —ng!

0! + 0+ AO!

20

10

0

10

—20

730 —20 —10 0 10 20
without momentum

—30 —20 —-10 0 10 20

with momentum



SGD with Adaptive Learning Rates

Preconditioning:

o'l — el —pP;1G(0Y), (65)

AdaGrad: Parameters with largest partial derivatives should have a
rapid decrease.

. 1/2
P; = {diag (ZG(@t)G(@t)T> } : (66)

J=0

RMSProp: Introduces momentum when computing the
preconditioner.

. 1/2
P, = {diag (aPtl +ZG(@t)G(®t)T) } . (67)

=0



AdaGrad

AdaGrad: Parameters with largest partial derivatives should have a
rapid decrease.

gl + G(O)
I‘t(—I‘t_l +gt®gt
t A t
AB" + v 08
Ot + o'+ AS!

(68)

John Duchi, Elad Hazan, and Yoram Singer. “Adaptive
subgradient methods for online learning and stochastic
optimization”. In: JMLR (2011).



RMSProp

RMSProp: Introduces momentum.

Replace

rt (*I‘t_1+gt@gt

by
r' —pr' Tl +(1-p)gfog’

— Much less influenced by first iterations.Geoffrey Hinton,
Nitish Srivastava, and Kevin Swersky. “Neural Networks for
Machine Learning”. In: Lecture 6a - Overview of mini-batch
gradient descent. 2012.



Adam

gl + G(0Y)

st p1s™ + (1—p1)g’

vl por't+ (1-po)gl O g!

5t if;l)t (71)
~t rt

AN U

AO! %fm“t

Ot ¢+ O + AO!

with € = 0.001, p; = 0.9, p2 = 0.999.

Convergence proof on convex problems, but also works well on
deep learning problems.

Diederik P Kingma and Jimmy Ba. “Adam: A method for
stochastic optimization”. In: /CLR. 2015.



Adam

s! is the gradient with momentum:
st pistTt (1 —py)gt.

r! accumulates the gradient norm (with momentum), as in
RMSProp:

¢ -1 t ot

r' < por +(1-p2)g Og'.

5" is smaller than s’ but converges towards it (p; =~ 0.9):

t
At S

— —.

1—(p1)
ft
At r!

e —.
1—(p2)!
Update as in RMSProp:
{ AO — ——2 _ g

S+Vit
ot et + AE?

is smaller than r! but converges towards it (p2 & 0.999):

(76)



vVvVvvyVvVvVvVvyyy

Loss functions;

Generalization and Overfitting;
Optimization for Deep Learning;
Back-Propagation;

Automatic Differentiation:
Optimization Algorithms;

Optimization Techniques



Optimization Techniques




Xavier Initialization

W,-jNUniform<—\/ 0 ,\/ 0 >, (77)
’ m+n \ m+n

with m the number of inputs and n the number of output of
matrix W.

Balances between all the layers to have the same activation
variance, and the same gradient variance.

Biases (b) usually initialized to 0.

X. Glorot and Y. Bengio. “Understanding the Difficulty of Training
Deep Feedforward Neural Networks”. In: International Conference
on Artificial Intelligence and Statistics. 2010.



Batch Normalization

Normalize distribution of each input feature in each layer across
each minibatch to AV/(0,1):

=1
m .
e LY (78)
i=1
X' < X —p
0% +e€

More resilient to parameter scaling.
Prevents exploding or vanishing gradients.

Sergey loffe and Christian Szegedy. “Batch normalization:
Accelerating deep network training by reducing internal covariate
shift”. In: arXiv Preprint. 2015.



Data Augmentation

Transform the original data, for example apply geometric
transformations.

0
/
7
3
<
4
(@
&
4
3




DropOut

Bagging/Ensemble methods: Averaging different models, as
different models will usually not make all the same errors on the
test set (AdaBoost, Random Forests, etc.).

i 1 &
o(x) = N Zoi(x), (79)
where the o; are different models (classifiers, regressors,..), and o6

the final model.

DropOut is an ensemble method that does not need to build the
models explicitly.

Nitish Srivastava et al. “"Dropout: A Simple Way to Prevent
Neural Networks from Overfitting”. In: JVMLR (2014).



DropOut

Considers all the networks that can be formed by removing units
from a network:

with @
— >

Base network

eadle

-0 00O
5 © e;'\ee,ge
S0
SaN©56,
®
®
Q@@/®




DropOut

At each optimization iteration: random binary masks on the units
to consider.

The probability p to remove a unit is a metaparameter.

&

O]

of

6
6/6@ ©
®\®9

©

G E
ot
!
o O7%e[F el
=6
@
®
®ee°

Ensemble of subnetworks



DropOut: Algorithm

w (ow)
Present with Always ’
probability p present

(a) At training time (b) At test time



DropQut: Justification

Exact inference:
N

Z X [4;) (80)

7
where the o; are different models (e.g. classifiers), o the final
model, and p; is the binary mask.

This is however intractable. DropOut provides an approximation
(that works well in practice).

DropOut is exact in the case of linear classification:
o(x) = softmax(Wx +b), (81)

and when using the geometric mean (instead of the arithmetic
mean) to average the models):

o(x)= o [ olxm), (82)
ne{0,1}n
where:
o(x; ) = softmax(W(p®x)+b). (83)



Multi-Task Learning

X Deep output
Network



Multi-Task Learning

auxiliary
output 1

Deep Network 2b

Deep Network 2a output

Deep Network 2c

X Deep Network 1 h

auxiliary
output 2



Multi-Task Learning

Deep Network 2b

ﬂ Deep Network 1 h

See alsoAmir R. Zamir et al. “Taskonomy: Disentangling Task
Transfer Learning”. In: CVPR. 2018.



