[GEIA-21B] Deep Learning: Introduction

Vincent Lepetit

September 12, 2021

Al / Machine Learning / Deep Learning

Artificial Intelligence

/ Expert Systems A

min-max

Machine Learning

Nearest Neighbor classifier

Naive Bayes classifier

Support Vector Machines
Boosting
Random Forests

Perceptron
Deep Learning

\\

Schedule

» Today: Neural networks, architectures, optimization,
intuitions.

» Tomorrow: Hands-on, deep learning for computer vision
problems.

P> Next session: Deep Learning in practice, selected topics.

Last session: Project on medical imagery.

Why Deep Learning is Currently so Popular?

» Very general: Computer Vision, Speech Recognition, Natural
Language Processing, Graphs, Chemistry, Mechanical
Engineering, Computer Graphics, etc.

> No need to engineer features;

> Very flexible framework. Originally developed for supervised
learning, but can be extended to many other problems.

> Why now?

> Faster computers (with GPUs); More training data; Better
optimization algorithms; Easy to use and powerful libraries in
Python; People are now convinced it works.

Perceptron (1958, Frank Rosenblatt)

Perceptron

The perceptron was developed for supervised binary classification.
Input data are represented as vectors x.

We are looking for a function f(x; w,b) such that
f(;w):xeR—{+1,-1}. w and b are the parameters of f.

Training set: We have examples {(x;,y;)} of vectors x
annotated with the expected values for f(x).

Perceptron
Linear model:

. 1 ifwTx+b>0,
f(x; w,b) = { —1 otherwise . M

[we need to find parameters w and b. We will see that later]

Inspired by works from neuroscientists such as Donald Hebb (see
Hebbian theory and Hebb's rule).

[1 . W1
Io |
X = .] 18]
- o = Y ,wiz;+b
g popm—
n = w'x+b

Perceptron: Geometric Interpretation

Negative samples X

Positive samples

'data anare’

Perceptron: Limitation

A perceptron can only correctly classify data points that are
linearly separable:

linearly separable nonlinearly separable

» The Perceptron: A 1-layer “network”;
» A 2-layer network (1-hidden layer network)

A Two-Layer Network: First Layer

@Z Wl zmz + bl)
: non-linear function
hin) @Z Wi, i@i + bm>

g(a) g(a)]/

a a
I Rectified Linear Unit (ReLU)
9(a) = max(0, a)

A 4

A Two-Layer Network: Second Layer

[+1 ifwygh+b>0,
f(x) _{ —1 otherwise .

hi=g kL Wi iz + bl)

h(x) = g(Wx+b) (2)
where g(x) is a non-linear function.

h can be seen as a learned feature vector. Its dimension is a
hyper-parameter.

Two-Layer Network

h1

o

O:W;—h—l—bQ

hm

{ h(x) = g(Wx +b)
0o(x) = wy h(x) + b

g(): non-linear function

The coefficients of matrix W, vectors b and w,, scalar b, are the parameters
of the network

h(x) = g(Wx + b)
o(x) = wy h(x) + b

g(): non-linear function

e The Perceptron: A 1-layer “network”;
e A 2-layer network;

e How does a 2-layer network “work”?

A Multilayer Network Can Solve
Non-Linearly Separable Problems

®
® o
e[® o o
o| ®o0® o9
O .. O
P
® ° %

%

\ mg(u) = max (0, u)gp
\ 9(Wx)

h(x) = g(Wx) with g(u) = max(0,u)
o(x) = wy h(x) + by

Wx

The Perceptron: A 1-layer “network”;
A 2-layer network;
How does a 2-layer network “work”?

The power of 2-layer networks;

Universal Approximation Theory for Two-Layer Networks

Proves that any continuous function can be approximated under
mild conditions as closely as wanted by a two-layer network:

h(x) = g(Wx+Db)
o(x) = wg h(x) + by

See

K. Hornik, M. Stinchcombe, and H. White. "Multilayer
Feedforward Networks Are Universal Approximators”. In: Neural
Networks (1989).

H. N. Mhaskar. “Neural Networks for Optimal Approximation of
Smooth and Analytic Functions”. In: Neural Computing (1996).

A. Pinkus. “Approximation Theory of the MLP Model in Neural
Networks”. In: Acta Numerica (1999).

Universal Approximation Theory for Two-Layer Networks

A two-layer network can be written as:

{ h(x) = g(Wx + b)
F(x) = wih(x) + by

or
N
Fx)=>cjg(Wlx—b)),
j=1

where g : R — R is an activation function and N is the number of
hidden units.

As N — o0, any continuous function f can be approximated by
some neural network f, because each component g(W(Tj)x—bj)
behaves like a basis function and functions in a suitable space
admits a basis expansion.

Universal Approximation Theorem:
Intuition in 1D

Universal Approximation Theorem:
Intuition in 1D

Universal Approximation Theorem:
Intuition in 1D

Introducing: {

\/ x‘a x‘b fbc

by = g(z —)
ho = g(x — xp)
g(z) = max(0, z)

Universal Approximnation Theorem:

Intuition in 1D

f(@)

w1h1 + b

waho

hi =gz — z,) _
Introducing: { hlzz(fﬂ—xb) h:g([1] T [—iz })
g(z) = max(0, z)

there exist wy, wy, by such that: f(x) = wihy + wahe +b = w'h+ b

By introducing more x; and hi,f(x) can approximate f{x) more closely.

Side note: Deep networks with ReLU activation functions extrapolate poorly.

Universal Approximation Theorem:
Intuition in 1D

f(@)

h1=g(z — z4) -
Introducing: { hlzz(fﬂ—xb) h:g([1] T [—iz })
g(z) = max(0, z)

there exist wy, wy, by such that: f(x) = wihy + wahe +b = w'h+ b

By introducing more x; and #;, fix) can approximatef(x) more closely.

The Perceptron: A 1-layer “network”;
A 2-layer network;

How does a 2-layer network “work”?
The power of 2-layer networks;

The structure of a 2-layer network function;

The Topology of the Function Learned
by a Two-Layer Network

A two-layer network:

h=g(Wx+b) with g(a) = max(a,0)

y = wah + by g(a)l/

or, more compactly:

a

g(a) = max(0,a)

Yy = wWag (WX + b) + b2 Rectified Linear Unit (ReLU)

g(a)|/
y = wag(Wx +b) + by

a
y(x) is a composition of continuous functions I
and is therefore continuous.
Introduce the matrix sign(a)
B(x) = diag(...,sign(W®x + b®),) P

y(X) can be rewritten:

y = woB(x)(Wx + b)
The function x — B(x) is piecewise constant.
Thus y(x)is piecewise affine.

y = max(w ' x + b,0)

y=20

L2

A

L1

y=w' x+0b

v

h = max(Wx + b, 0)
{ y = W/Th x2
with dim(h) =2
X
CL’f

= wi(Wyi.x+b1)

h = max(Wx + b, 0)
y = w' 'h

with dim(h) = 3

N

W3~.X’\'b3;0

L2

A

>

-

L1

v

The Perceptron: A 1-layer “network”;

A 2-layer network;

How does a 2-layer network “work”?

The power of 2-layer networks;

The structure of a 2-layer network function;

The limitations of 2-layer networks, and the motivation for multi-layer

networks;

Universal Approximation Theory for Two-Layer Networks

A two-layer network can be written as:
h(x) = g(Wx+b)
F(x) = wih(x)+by
or
A N
fx) = z;cj'g(W(Tj)X— bj),
J:
where g : R — R is an activation function and NN is the number of
hidden units.
N (or equivalently h) may need to be large.

Deeper networks can mitigate this problem.

Multi-Layer Networks

2-layer network:

3-layer network:

etc.

Universal Approximation Theory for Deep Networks

The approximation theory for multilayer neural nets is less
understood compared with neural nets with one hidden layer.

Deep neural nets excel at representing a composition of functions.

D. Rolnick and M. Tegmark. “The Power of Deeper Networks for
Expressing Natural Functions™. In: arXiv Preprint. 2017.

T. Poggio et al. “Why and When Can Deep-But Not
Shallow-Networks Avoid the Curse of Dimensionality: A Review".
In: International Journal of Automation and Computing (2017).

D. Rolnick and M. Tegmark. “The Power of Deeper Networks for
Expressing Natural Functions”. In: arXiv Preprint. 2017.

Deeper Networks Perform Better for a Given
Number of Parameters in Practice

A
Accuracy 11 layers 2 networks with almost
¥~ the same number of

parameters, but
different depths and
different accuracies

3 layers

[

Number of parameters

|. Goodfellow, Y. Bengio, A. Courville. Deep Learning. 2016.

For 2 Layers

\4

For 3 Layers

Number of Regions Generated by a Two-Layer Network

Maximum number of pieces into which r hyperplanes disconnect

1

h(x) =g(Wx+b)
{ o) ST b

5 <|h|>

i—o \ *
G. Montufar et al. “On the Number of Linear Regions of Deep
Neural Networks”. In: NIPS. 2014,

A 2-layer network:

generates at most:

Number of Regions Generated by a Three-Layer Network

A 3-layer network:

hl(X) :g(W1X+b1)
hy(hi) = g(W2h; +bs)
y(X) = W;—hg +b3

generates at most:

() E)

Number of Regions as a Function of the Number of
Network Parameters for Different Depths

For a given number of layers D, and a given number of parameters P, set dims of

Il the h tors t P
all the h vectors to | —
D

network with 4 layers
Number of

regions
(log scale)

10

10%

network with 3 layers

100

network with 2 layers

10! 107 10°
Number of parameters
(log scale)

The Perceptron: A 1-layer “network”;

A 2-layer network;

How does a 2-layer network “work”?

The power of 2-layer networks;

The structure of a 2-layer network function;

The limitations of 2-layer networks, and multi-layer networks;

Dealing with images;

Dealing with Images

A W N = O

i
$

© © N O

x h,

Product of convolution: hi1 =g(fi,1 *x+ by 1)
hl = [g(fl,l * X)) s >g(f1,m * X)]

Convolution: Example

55

X
-1 +1
-1 +1
-1 +1

hi; =g(fi1xx+ b1,1)

Numerical Example

56

-1 +1
-1 +1
-1 +1

(=1) x 25540 x 255 + (+1
(—1) x 255 + 0 x 255 + (+1
(—1) x 255 +0 x 0+ (+1) x
—255 404255
—2554+040
—2554+040

—-510

)
)

X 255+
x 0+
x 0

Product of convolution: hi1 =g(fi,1 *x+ by 1)

hl = [g(fl,l * X)) cee 7g(f1,m * X)]
“tensor”

Tensors

1x16x 16 1x16x 16

TS

#channels x Height x Width

Tensors

1x16x 16 6x16x 16

Tensors

v

1X6x3x3

1x16 x 16 \\6)(16)(16

#input channels x #output channels x size x size

Tensors

color image - >

3X6X3x3

3x16x 16 6x16x 16

#input channels x #output channels x size x size

Tensors

6x16x3x3

6x16x16/ \mem

#input channels x #output channels x size x size

Subsampling / Pooling

1
For example, max-pooling:

h;[u,v] = max{ h;_1[2u, 2],
h;_[2u, 2v + 1],
hi_l[QU + 1, 2@],
hi_1[2u + 1, 2’0 + 1] }

P
P

X

h1 h2

hy = [g(fi,1 *x),...,9(f1,m *x)] ——
h2 = p001ing(h1) Recording electrode —

Inspired by the theory of Hubel and Wiesel j

on the visual cortex (Nobel prize in 1981)

Making Convolutional Networks
Shift-Invariant Again

The Max Pooling operation, while popular, is actually not very robust to
small shifts:

=0= MaxPool {baseline) ~O= MaxBlurPeal (ours) ~C~ MaxPool {baseline) ~O= MaxBlurPeol (ours)
1.0 1.0 T e T
o -
z08 zo0s8
< =]
g o6 g o6
3 g
=04 = 047
3 S
2 2
foz2 fo2
LX<} ey mocas sy oo s, e, o s Sy ooy e OO AT T T e
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 © 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
Diagonal shitt Diagonal shitt
=0O= MaxPoal [baseline) =0~ MaxBlurfool {ours) =0~ MaxPool {baseline) ~O= MaxBlurPool (ours)
1.0 1.0
Zos fos]
< =
2086 0.6
S s
=04 Zo04
3 3
2 .05
fo2 fo2
0,04

T ————————— 0.0 T T U T
¢ 2 4 6 8 1012 14 16 18 20 22 2‘5 26 28 30 © 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
Diaganal shill Diagonal shift

Making Convolutional Networks Shift-Invariant Again. Richard Zhang. ICML 2019.

Shift-[In]variance: 1D Toy Problem

Example input signal

Shift-[In]variance: 1D Toy Problem

Example input signal Pooling regions

| | 1l R |

MaxPool results in large deviations depending on shift

—
N N N

Shift-[In]variance: 1D Toy Problem

Example input signal Pooling regions

| | 1l R |

Pooling regions

| | f] |]

MraxPooI reéults in large deviations depending on shift

—
N N N

Antialising MaxPooling

max() max(} ——,
e W T o l{
e) HEFT
Baseline N B o — S e \ e,
(MaxPool) T —_—) R
Shift-equivariance lost; (1) Max (dense evaluation) == (2) Subsampling
heavy aliasing Preserves shift-equivariance Shift-eq. lost; heavy aliasing
_maxt)

e B N

Anti-aliased e » ;. _ LA

(MaxBlurPool) max()

(1) Max (dense evaluation) + (2) Anti-aliasing filter + (3) Subsampling
Preserves shift-eq. Preserves shift-eq.

Antialising MaxPooling

Example input signal Pooling regions

| | 1l R |

Pooling regions

AA

h1 = [g(le * X) g(fl,m * X)]

h, = pooling(h,) convolutional layers
by = [g(fs 5 h), o g(fs +ho)| <

h, = pooling(hj) —— pooling layers

h) = Vec(hy)

h; = g(W5h) + bs)
o = Wghs + bg

«—— fully-connected layers

iyl

© ® N O

By contrast with other Computer Vision models:
* CNNs retain spatial information (compare with Bags-of-Words for example);
* CNNs do not need engineered features (compare with Histograms of Gradients

for example).

The Perceptron: A 1-layer “network”;

A 2-layer network;

How does a 2-layer network “work”?

The power of 2-layer networks;

The structure of a 2-layer network function;

The limitations of 2-layer networks, and multi-layer networks;
Dealing with images;

How do we find the parameters of a Deep Network?

Finding the Parameters
h(x) = g(Wx + b)
O(X) = WQh(X) + b2

How can we find W, b, W,, andb,?

- By minimizing a loss function. The loss function can be adapted to
the problem.

(Wvgawz)l/);) = argmin E(W7b,W2,b2)
(W,b,W3,bs)

Optimisation: (Variants of) gradient descent.

Example of Loss Function

For example:

Training sample _——

(2],2)

Predicted output for

the training sample

Training set T

Q=MD D8 fr ¥
O —hrmI\wS oo
S =@ > H\8 0o
QA NI AR
V=N < F s~ o
QN TWVWID e o
Q~cxx I PO NN o
O =N I b o= o
DO~ K MTWVE W
O =g m NS N o
QO —~ N T N oo
O~ W TN N
Q — e P INS Moo oy
O~dm>\9 rree
S =M J NS - T
0O —% 0T \0Y (-0
D — oo NS
C=d e TS 8 O
O~ M0 N N

O~ T O NG

How to Choose the HyperParameters (Number of
Layers, Number of Filters, Sizes of the Filters)?

* In practice, often from previous experience...;
» Automatically, using ‘AutoML’.

Xin He, Kaiyong Zhao, Xiaowen Chu. AutoML: A Survey of the State-of-
the-Art. arXiv 2019.

The Perceptron: A 1-layer “network”;

A 2-layer network;

How does a 2-layer network “work”?

The power of 2-layer networks;

The structure of a 2-layer network function;

The limitations of 2-layer networks, and multi-layer networks;
Dealing with images;

How do we find the parameters of a Deep Network?

What does a Deep Network compute internally?

Learned Filters for the First Layer
for Natural Images

p __ motor scooter sopard

I N NN N R SE N N ==
S N R N N SN S S mim = S
HE Rl TN D NG .. EE =N N BN
HE S NSNS D En DR = N =S
ENNN SN RN DN SESS ER (o B
HE N NN EEEE DN N IS

HE Nl OE e ™ |
ENDNNESS N D ™R

{f1,;};

Images that Generate High Images that Generate High
Values for a Neuron in Layer 2 Values for a Neuron in Layer 3

Current Limits of Deep Learning

. “the inconvenient truth” is that at present the algorithms that
feature prominently in research literature are in fact not, for the
most part, executable at the frontlines of clinical practice.

Panch19.

Images with High Confidence Predictions

robin cheetah king penguin starfish

Leapponnnt
Hipopnooosn
rrrenpgeROEn

116800

centipede " jackfruit l I freight car " remote control

Adversarial Examples

A. Nguyen, J. Yosinski, and J. Clune. Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable Images. CVPR 2015.

Other Adversarial Examples

min ||r||2 subject to ¢(x + 1) # ¢(x)

where
* xis animage and
* ¢() is the class predicted by an already trained network.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard. Deepfool:
A Simple and Accurate Method to Fool Deep Neural Networks. CVPR 2016.

Other Adversarial Examples

min ||r||2 subject to ¢(x + r) # ¢(x)

where
* xis animage and
* ¢(.) is the class predicted by an already trained network.

-

r X+r

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard. DeepFool:
A Simple and Accurate Method to Fool Deep Neural Networks. CVPR 2016.

Other Adversarial Examples

min ||r||2 subject to ¢(x + r) # ¢(x)

where
* xis animage and
* ¢(.) is the class predicted by an already trained network.

Predicted class:
‘Indian elephant'

-

r X+r

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard. DeepFool:
A Simple and Accurate Method to Fool Deep Neural Networks. CVPR 2016.

Natural Adversarial Examples

Fox Squirrel Lion 199%) Dragonll Manhole Cover (99%)
S o ¥ 2T RS

ImageNet-A

Photosphere ellyfish {99%) Verdigris

o

ImageNet-O

Natural Adversarial Examples. Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob
Steinhardt, Dawn Song. CVPR 2021.

recognizing objects

rackel 151} tree frog (99) cash machine 1971 beacen {99) padiock 199) ice lally (93)

LA Fike

Natural Adversarial Examples. Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob
Steinhardt, Dawn Song. CVPR 2021.

recognizing objects

tealtic light 199 lea’ beelis (39) rackel 151} tree lrog (99) cash machine 1971 beacen {99) padiock 199) ice lally {(939)

% 0 e Bl

fa) Quiput prediction on ongioal images,

DS

(b) Prediction when foreground 15 whitened.

Natural Adversarial Examples. Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob
Steinhardt, Dawn Song. CVPR 2021.

recognizing objects

tealtic light 199 lea’ beet rackel 151} tree lrog (99) cash machine 1971 beacen {99) padiock 199) ice lally {(939)

i T e B

fa) Quiput prediction on onginal images,
traffic light 1331 leaf heetle (651 racket 145] tee frog 131} cash machine [25) bracon (74) padicck {30) ire lally (753

DS &

(b) Prediction when foreground 15 whitened.

Natural Adversarial Examples. Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob
Steinhardt, Dawn Song. CVPR 2021.

“Modern” Deep Learning

Skip Connections

For example (Residual module):

hy = g(Wzh + by)
h; = W3hs + bs
h, = g(h + h3)

h=hy=hs;=>h,

Skip Connections

For example (Residual module):

h2 = g(Wgh + bg)
h3 = Wghg + b3 h' > h2' :’hg ! :’h4
hy = g(h + h3)

Does not create a larger set of neural networks. The following network has the
standard structure and computes the same outpult:

W, bo
h), _9({1111* [0]) because
! 0 g(a) —g(—a) = a

(for the case g(a) = max(0,a))

|:g(W2h + b2)]
g(h)
g(—h)
hy = [WsI —I]h}+bs
= W3hy + b3 + g(h) — g(—h)
:W3h2+b3—|—h:h3—|—h

b} =g(h3) =hy

Skip Connections

For example (Residual module):

hy; = g(Wzh + by)

h3 :W3h2+b3 h' :’h2'

>ha:

hy = g(h + hj)

» Limits vanishing and exploding gradients.

ResNet [He et al, CVPR 2016]

ResNet, 152 layers
(ILSVRC 2015)

AlexNet, 8 layers = VGE, 19 layars

bt et

(ILSVRC 2012) (ILSVRC 2014)

R

ResNet [He et al, CVPR 2016]

Revolution of Depth

152 layers
‘\
] ZZIayers |\ 19}ayers ayers | l l

i I____I slayets {8Iayers| i

ILSVRC'1S ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 ILSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Transformers

...L,,[w't] [w2] [w3] [w's] [W's]
T = 1= 1

softmax
[Classification Layer: Fully-connected layer + GELU + Norm]

I i i I I
Lo) (o) (o) (o J [0]
! I I I !

Transformer encoder

Entecang | I ! ! I

Lw J (we) ([we] (owsa] [ws |

I [| [!

Wi w2 w3 Wsq Ws

BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova.
2019.

Optimization Algorithms and Tricks

Stochastic Gradient Descent, momentum, Adam, etc.
» Batch normalization, DropOut, etc.

+ Data augmentation, etc.

Multi task training, ...

Python Libraries

TensorFlow, Keras, PyTorch, ..

from keras.models import Sequential

from keras.layers import Conv2D, MaxPooling2D

model = Sequential ()

model.add (Conv2D (32, (3, 3), activation='relu’, input_shape=(28,

from keras.layers import Flatten

model.add (Flatten())

from keras.layers import Dense

model.add (Dense (128, activation='relu'))

model.add (Dense (10, activation='softmax'))

model.compile (loss='categorical crossentropy’, optimizer='adam',

model.fit (X_train, Y train, batch_size=32, epochs=10, verbose=1)

28, 1)))

metrics=['accuracy'])

Recurrent Networks

(a) One-to-many (b) Many-to-one

(c)

Many-to-many

Smart Use of Deep Learning
to Solve Specific Problems

How can we formalize these problems in order to solve them with Deep Learning?

Beyond Supervised Learning

e We can use a Deep Network to approximate any continuous function;

X Deep Network f 0}

e We can use any loss function as long as it is differentiable;

- very flexible!

Siamese Networks

X1 . Deep Network 1 Description vector f(x,)
w

X2) § Deep Network f Description vector fix,)
g ,

Loss function:

* minimize the distance ||f{(x,) — f(x,)|| for samples x,, x, that correspond to
each other;

* maximize the distance ||f{(x,) — f{(x,)|| for samples x,, x, that don't.

Self Learning: Case of
Unsupervised Depth Prediction
’ &

Unsupervised Depth Estimation

sl -

left image x; predicted f x[

depth —

d Warp(xpg, f(x1))
differentiable!

rightimage xz

Loss function:

L= 3" |xz— Warp(xg, f(xz))?

(xL,xR)

Generative Adversarial Networks

We would like to train a network G to generate
images of digits from noise vectors z:

VA

Generator 3
-

Gaussian
distribution

Generative Adversarial Networks

r
Real Data Discriminator {real dats,
.. - e

. Generator . Discriminator — T
G(z) D(G(2)) generated)
Gaussian

distribution

Generative Adversarial Networks

Generated Images

Real-time Reenactment

3

brg Quick Take “

DeepFakes are an extension
of GANs

Sometimes used to generate
training data

110

transfer learning / domain transfer

Transfer learning:
- we have few training data on our problem, but
- we have a lot of training data for a similar problem.

transfer learning / domain transfer

A simple method for transfer learning:

14 covid

{] N non-covid
| Deep Network |)

1. Training a deep network on a problem where a large amount of training data
is available:

! [I[Deep Network 1]I)

M

transfer learning / domain transfer

A simple method for transfer learning:

{] N non-covid
| Deep Network | 4 covid
2. Cut this network into two parts (after training):
1 [I 1 N
& { Deep Netwolk 1 | 4

Y LR
e | Lo |

‘features’

112

transfer learning / domain transfer

A simple method for transfer learning:

14 covid

{] N non-covid
| Deep Network |)

3. Keep the parameters of Part 1, initialize randomly Part 2b with the new number
of classes

non-covid

= e o || ()= B s

‘features’

113

transfer learning / domain transfer

A simple method for transfer learning:

14 covid

{] N non-covid
| Deep Network |)

4. Keep the parameters of Part 1, optimize only the parameters of Part 2b on the
available data
Alternatively, we can ‘fine-tune’ the parameters of Part 1.

non-covid

=] || (e = B s

‘features’

114

transfer learning / domain transfer

A simple method for transfer learning:

14 covid

{] N non-covid
| Deep Network |)

non-covid

| Deep Network :{>r covid

115

Image Captioning

recurrent network / I
‘ Deep Network » I transformer decoder

embedding for I

the image

embeddings of
the words of the
description

129

How to Evaluate a Deep Network

training set, validation set, test set

training set validation set test set
use it to find the classifier use it to find the classifier's use it to evaluate the
(ie the separation hyperparameters classifier

between the classes) the performance on the

validation set is an estimate of
116 the performance on the test sett

117

Positive and negative samples

: A sample from the “positive” class (eg ‘at risk’);
: A sample from the “negative” class (eg ‘not at risk’);

A positive sample classified as positive
A negative sample classified as positive

A negative sample classified as negative
A positive sample classified as negative
The classification error rate considers the costs of false positives and
false negatives to be the same.

This is not necessarily true, for example for a medical test.

- We need finer metrics

118

new metrics

positive: A sample from the “positive” class;
negative: A sample from the “negative” class;

true positive: A positive sample classified as positive
false positive: A negative sample classified as positive

true negative: A negative sample classified as negative
false negative: A positive sample classified as negative

Classification error rate
= (# false positives + # false negatives) / # samples

119

new metrics

positive: A sample from the “positive” class;
negative: A sample from the “negative” class;

true positive: A positive sample classified as positive
false positive: A negative sample classified as positive

true negative: A negative sample classified as negative
false negative: A positive sample classified as negative
True Positive rate (TP) = # true positives / # positives

a number between 0 (worst) and 1 (best)

120

new metrics

positive: A sample from the “positive” class;
negative: A sample from the “negative” class;

true positive: A positive sample classified as positive
false positive: A negative sample classified as positive

true negative: A negative sample classified as negative
false negative: A positive sample classified as negative
False Positive rate (FP) = # false positives / # negatives

a number between 0 (best) and 1 (worst)

121

new metrics

positive: A sample from the “positive” class;
negative: A sample from the “negative” class;

true positive: A positive sample classified as positive
false positive: A negative sample classified as positive

true negative: A negative sample classified as negative
false negative: A positive sample classified as negative
True Negative rate (TN) = # true negatives / # negatives

a number between 0 (worst) and 1 (best)

122

new metrics

positive: A sample from the “positive” class;
negative: A sample from the “negative” class;

true positive: A positive sample classified as positive
false positive: A negative sample classified as positive

true negative: A negative sample classified as negative
false negative: A positive sample classified as negative
False Negative rate (FN) = # false negatives / # positives

a number between 0 (best) and 1 (worst)

123

new metrics

True Positive rate (TP) = # true positives / # positives
False Positive rate (FP) = # false positives / # negatives

True Negative rate (TN) = # true negatives / # negatives

False Negative rate (FN) = # false negatives / # positives
It is easy to have a True Positive rate equal to 1 (how?)

It is easy to have a True Negative rate equal to 1 (how?)

It is almost impossible to have a True Positive rate and a True
Negative rate both equal to 1.

124

new metrics

True Positive rate (TP) = # true positives / # positives
False Positive rate (FP) = # false positives / # negatives

True Negative rate (TN) = # true negatives / # negatives
False Negative rate (FN) = # false negatives / # positives
It is easy to have a True Positive rate equal to 1 (how?)

It is easy to have a True Negative rate equal to 1 (how?)

It is almost impossible to have a True Positive rate and a True
Negative rate both equal to 1.

Finding a good classifier is a balance between a good True Positive
rate and a good True Negative rate. The acceptable values for TP
and TN (or FP and FN) depend on the target application.

new metrics

True Positive rate (TP) = # true positives / # positives
False Positive rate (FP) = # false positives / # negatives

True Negative rate (TN) = # true negatives / # negatives
False Negative rate (FN) = # false negatives / # positives
It is easy to have a True Positive rate equal to 1 (how?)

It is easy to have a True Negative rate equal to 1 (how?)

It is almost impossible to have a True Positive rate and a True
Negative rate both equal to 1.

We would like to have metrics that capture the balance between the
different errors (and success) of the classifier.

126

recall and precision

Additional metrics:
precision = # true positives / (# true positives + # false positives)
recall = True Positive rate

= # true positives / # positives
= # true positives / (# true positives + # false negatives)

recall and precision

relevant elements
* precision =
true positives / (# true positives + # false positives)

false negatives truc negatives

®o o, o o

» recall = True Positive rate
precision: proportion of samples predicted positive that
are actually positive (between 0 and 1)

recall: proportion of the samples actually positive that
are predicted positive (between 0 and 1)

selacted elements

Kaw many seiscion Hows rrany e cvant
ems are relevs 1t toms ane salected

Precision = —— Recall = ——

128

recall and precision

relevant elements
e precision =
true positives / (# true positives + # false positives)

false necgatives truc ncgatives

» recall = True Positive rate
precision: proportion of samples predicted positive that
are actually positive (between 0 and 1)

recall: proportion of the samples actually positive that
are predicted positive (between 0 and 1)

selacted elements

If the precision is high, we can trust the classifier when
it predicts that a sample is positive.

Precision = —— Recall = ——

If the recall is high, the classifier will correctly identify
the positive samples (but maybe generate many false
positives).

